|
import torch |
|
|
|
|
|
input_dir_path = "/scratch/project_462000086/norwegian_gpt/Megatron-DeepSpeed-fixed/checkpoints/global_step120000" |
|
output_dir_path = "/scratch/project_462000086/norwegian_gpt/Megatron-DeepSpeed-fixed/hf_pilot_checkpoint_120k" |
|
|
|
n_hidden = 4096 |
|
n_heads = 32 |
|
n_layers = 32 |
|
n_tp = 4 |
|
|
|
|
|
weights = {} |
|
|
|
|
|
embedding_weights = [] |
|
for i in range(n_tp): |
|
path = f"{input_dir_path}/layer_01-model_0{i}-model_states.pt" |
|
checkpoint = torch.load(path) |
|
|
|
embedding_weights.append(checkpoint["word_embeddings.weight"].bfloat16()) |
|
|
|
weights[f"transformer.word_embeddings_layernorm.weight"] = checkpoint["word_embeddings.norm.weight"].bfloat16() |
|
weights[f"transformer.word_embeddings_layernorm.bias"] = checkpoint["word_embeddings.norm.bias"].bfloat16() |
|
|
|
weights[f"transformer.word_embeddings.weight"] = torch.cat(embedding_weights, dim=0) |
|
weights[f"lm_head.weight"] = torch.cat(embedding_weights, dim=0) |
|
del embedding_weights |
|
|
|
|
|
|
|
for layer in range(n_layers): |
|
qkv_weights = [] |
|
qkv_biases = [] |
|
o_weights = [] |
|
up_weights = [] |
|
up_biases = [] |
|
down_weights = [] |
|
|
|
for i in range(n_tp): |
|
path = f"{input_dir_path}/layer_{layer+3:02d}-model_0{i}-model_states.pt" |
|
checkpoint = torch.load(path) |
|
|
|
weights[f"transformer.h.{layer}.input_layernorm.weight"] = checkpoint["input_layernorm.weight"].bfloat16() |
|
weights[f"transformer.h.{layer}.input_layernorm.bias"] = checkpoint["input_layernorm.bias"].bfloat16() |
|
weights[f"transformer.h.{layer}.self_attention.dense.bias"] = checkpoint["self_attention.dense.bias"].bfloat16() |
|
weights[f"transformer.h.{layer}.post_attention_layernorm.weight"] = checkpoint["post_attention_layernorm.weight"].bfloat16() |
|
weights[f"transformer.h.{layer}.post_attention_layernorm.bias"] = checkpoint["post_attention_layernorm.bias"].bfloat16() |
|
weights[f"transformer.h.{layer}.mlp.dense_4h_to_h.bias"] = checkpoint["mlp.dense_4h_to_h.bias"].bfloat16() |
|
|
|
qkv_weights.append(checkpoint["self_attention.query_key_value.weight"].bfloat16()) |
|
qkv_biases.append(checkpoint["self_attention.query_key_value.bias"].bfloat16()) |
|
o_weights.append(checkpoint["self_attention.dense.weight"].bfloat16()) |
|
up_weights.append(checkpoint["mlp.dense_h_to_4h.weight"].bfloat16()) |
|
up_biases.append(checkpoint["mlp.dense_h_to_4h.bias"].bfloat16()) |
|
down_weights.append(checkpoint["mlp.dense_4h_to_h.weight"].bfloat16()) |
|
|
|
weights[f"transformer.h.{layer}.self_attention.query_key_value.weight"] = torch.cat(qkv_weights, dim=0) |
|
weights[f"transformer.h.{layer}.self_attention.query_key_value.bias"] = torch.cat(qkv_biases, dim=0) |
|
weights[f"transformer.h.{layer}.self_attention.dense.weight"] = torch.cat(o_weights, dim=1) |
|
weights[f"transformer.h.{layer}.mlp.dense_h_to_4h.weight"] = torch.cat(up_weights, dim=0) |
|
weights[f"transformer.h.{layer}.mlp.dense_h_to_4h.bias"] = torch.cat(up_biases, dim=0) |
|
weights[f"transformer.h.{layer}.mlp.dense_4h_to_h.weight"] = torch.cat(down_weights, dim=1) |
|
|
|
|
|
path = f"{input_dir_path}/layer_36-model_00-model_states.pt" |
|
checkpoint = torch.load(path) |
|
|
|
weights[f"transformer.ln_f.bias"] = checkpoint["bias"].bfloat16() |
|
weights[f"transformer.ln_f.weight"] = checkpoint["weight"].bfloat16() |
|
|
|
torch.save(weights, f"{output_dir_path}/pytorch_model.bin") |
|
|