davda54 commited on
Commit
ddd8bda
·
verified ·
1 Parent(s): bb700aa

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MistralForCausalLM"
4
+ ],
5
+ "bos_token_id": 1,
6
+ "eos_token_id": 2,
7
+ "pad_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 14336,
12
+ "max_position_embeddings": 2048,
13
+ "model_type": "mistral",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 8,
17
+ "rms_norm_eps": 1e-05,
18
+ "rope_theta": 10000.0,
19
+ "sliding_window": 2048,
20
+ "tie_word_embeddings": false,
21
+ "torch_dtype": "bfloat16",
22
+ "transformers_version": "4.34.0.dev0",
23
+ "use_cache": true,
24
+ "vocab_size": 32768
25
+ }
convert_weight.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from tqdm import tqdm
3
+
4
+
5
+ input_dir_path = "/scratch/project_462000086/norwegian_gpt/Megatron-DeepSpeed-fixed/mistral-7b-post-1.0e-4_2nd_run/global_step31250"
6
+ output_dir_path = "/scratch/project_462000086/norwegian_gpt/Megatron-DeepSpeed-fixed/hf_mistral_finetuned_60k"
7
+
8
+ n_hidden = 4096
9
+ n_ffn_hidden = 14336
10
+ n_heads = 32
11
+ n_kv_heads = 8
12
+ n_layers = 32
13
+ n_tp = 2
14
+
15
+
16
+ weights = {}
17
+
18
+ # embedding
19
+ embedding_weights = []
20
+ for i in range(n_tp):
21
+ path = f"{input_dir_path}/layer_01-model_0{i}-model_states.pt"
22
+ checkpoint = torch.load(path)
23
+
24
+ embedding_weights.append(checkpoint["word_embeddings.weight"].bfloat16())
25
+
26
+ weights[f"model.embed_tokens.weight"] = torch.cat(embedding_weights, dim=0)
27
+ del embedding_weights
28
+
29
+ lm_head_weights = []
30
+ for i in range(n_tp):
31
+ path = f"{input_dir_path}/layer_{n_layers + 5}-model_0{i}-model_states.pt"
32
+ checkpoint = torch.load(path)
33
+
34
+ lm_head_weights.append(checkpoint["lm_head.weight"].bfloat16())
35
+
36
+ weights[f"lm_head.weight"] = torch.cat(lm_head_weights, dim=0)
37
+ del lm_head_weights
38
+
39
+
40
+ # transformer layers
41
+ for layer in tqdm(range(n_layers)):
42
+ q_weights, k_weights, v_weights, o_weights = [], [], [], []
43
+ up_weights, gate_weights, down_weights = [], [], []
44
+
45
+ for i in range(n_tp):
46
+ path = f"{input_dir_path}/layer_{layer+3:02d}-model_0{i}-model_states.pt"
47
+ checkpoint = torch.load(path)
48
+
49
+ weights[f"model.layers.{layer}.input_layernorm.weight"] = checkpoint["input_layernorm.weight"].bfloat16()
50
+ weights[f"model.layers.{layer}.post_attention_layernorm.weight"] = checkpoint["post_attention_layernorm.weight"].bfloat16()
51
+
52
+ kv_weight = checkpoint["self_attention.key_value.weight"].bfloat16()
53
+ k_weight, v_weight = torch.chunk(kv_weight, 2, dim=0)
54
+ k_weights.append(k_weight)
55
+ v_weights.append(v_weight)
56
+
57
+ q_weights.append(checkpoint["self_attention.query.weight"].bfloat16())
58
+ o_weights.append(checkpoint["self_attention.dense.weight"].bfloat16())
59
+ down_weights.append(checkpoint["mlp.dense_4h_to_h.weight"].bfloat16())
60
+
61
+ up_gate_weight = checkpoint["mlp.dense_h_to_4h.weight"].bfloat16()
62
+ up_weight, gate_weight = torch.chunk(up_gate_weight, 2, dim=0)
63
+ up_weights.append(up_weight)
64
+ gate_weights.append(gate_weight)
65
+
66
+ weights[f"model.layers.{layer}.self_attn.q_proj.weight"] = torch.cat(q_weights, dim=0)
67
+ weights[f"model.layers.{layer}.self_attn.k_proj.weight"] = torch.cat(k_weights, dim=0)
68
+ weights[f"model.layers.{layer}.self_attn.v_proj.weight"] = torch.cat(v_weights, dim=0)
69
+ weights[f"model.layers.{layer}.self_attn.o_proj.weight"] = torch.cat(o_weights, dim=1)
70
+ weights[f"model.layers.{layer}.mlp.up_proj.weight"] = torch.cat(up_weights, dim=0)
71
+ weights[f"model.layers.{layer}.mlp.gate_proj.weight"] = torch.cat(gate_weights, dim=0)
72
+ weights[f"model.layers.{layer}.mlp.down_proj.weight"] = torch.cat(down_weights, dim=1)
73
+
74
+
75
+ # output layer norm
76
+ path = f"{input_dir_path}/layer_{n_layers + 4}-model_00-model_states.pt"
77
+ checkpoint = torch.load(path)
78
+
79
+ weights[f"model.norm.weight"] = checkpoint["weight"].bfloat16()
80
+
81
+ torch.save(weights, f"{output_dir_path}/pytorch_model.bin")
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f1d83b04a9eb4da175967fe9567acd1ccde62eecacb367c15c9717b4a1d4e81
3
+ size 14496143545
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "</s>"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ {"unk_token": "<unk>", "eos_token": "</s>", "bos_token": "<s>", "tokenizer_class": "PreTrainedTokenizerFast"}
2
+