phoebeklett's picture
Upload modeling.py
58e75e8 verified
raw
history blame
63.6 kB
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This code has been adapted from Meta and Huggingface and inherits the above lisence.
# The original code can be found here:
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
# We annotate the edited code below with 'EM' comments to indicate where we have made changes.
"""PyTorch Extended LLaMA model."""
import math
from typing import List, Optional, Tuple, Union
import faiss
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from torch import nn
from torch.linalg import vector_norm
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration import ExtendedLlamaConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "ExtendedLlamaConfig"
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
input_ids_shape: torch.Size,
dtype: torch.dtype,
device: torch.device,
past_key_values_length: int = 0,
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat(
[
torch.zeros(
tgt_len, past_key_values_length, dtype=dtype, device=device
),
mask,
],
dim=-1,
)
return mask[None, None, :, :].expand(
bsz, 1, tgt_len, tgt_len + past_key_values_length
)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.finfo(dtype).min
)
class LlamaRMSNorm(nn.Module):
"""LlamaRMSNorm is equivalent to T5LayerNorm"""
def __init__(self, hidden_size, eps=1e-6):
"""
LlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
"""Apply RMS Norm"""
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class LlamaRotaryEmbedding(torch.nn.Module):
"""Rotary Positional Embedding"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
)
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings,
device=self.inv_freq.device,
dtype=torch.get_default_dtype(),
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer(
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
)
self.register_buffer(
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
)
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(
self,
dim,
max_position_embeddings=2048,
base=10000,
device=None,
scaling_factor=1.0,
):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
)
t = t / self.scaling_factor
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer(
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
)
self.register_buffer(
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
)
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(
self,
dim,
max_position_embeddings=2048,
base=10000,
device=None,
scaling_factor=1.0,
):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings)
- (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
)
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer(
"cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False
)
self.register_buffer(
"sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False
)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
"""Apply rotary positional embedding to q and k."""
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
s_q = q.size(
-2
)
# EM: Since we apply rotary pos emb after reading from cache, queries may be shorter
_q_position_ids = position_ids[:, -s_q:]
_q_cos = cos[_q_position_ids].unsqueeze(1)
_q_sin = sin[_q_position_ids].unsqueeze(1)
q_embed = (q * _q_cos) + (rotate_half(q) * _q_sin)
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class LlamaMLP(nn.Module):
"""MLP Module"""
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
if self.config.pretraining_tp > 1:
slice = self.intermediate_size // self.config.pretraining_tp
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
gate_proj = torch.cat(
[
F.linear(x, gate_proj_slices[i])
for i in range(self.config.pretraining_tp)
],
dim=-1,
)
up_proj = torch.cat(
[
F.linear(x, up_proj_slices[i])
for i in range(self.config.pretraining_tp)
],
dim=-1,
)
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
down_proj = [
F.linear(intermediate_states[i], down_proj_slices[i])
for i in range(self.config.pretraining_tp)
]
down_proj = sum(down_proj)
else:
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim
)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class ExtendedLlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: ExtendedLlamaConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(
self.hidden_size, self.num_heads * self.head_dim, bias=False
)
self.k_proj = nn.Linear(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
)
self.v_proj = nn.Linear(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
)
self.o_proj = nn.Linear(
self.num_heads * self.head_dim, self.hidden_size, bias=False
)
self._init_rope()
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = LlamaRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
elif scaling_type == "dynamic":
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return (
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
.transpose(1, 2)
.contiguous()
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
output_retrieved_memory_idx: bool = False,
use_cache: bool = False,
long_range_past_key_value=None,
faiss_indexes=None,
mask_by_sim=False,
sim_threshold=0.0,
topk=None,
current_layer=None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""forward"""
bsz, q_len, _ = hidden_states.size()
if self.config.pretraining_tp > 1:
key_value_slicing = (
self.num_key_value_heads * self.head_dim
) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [
F.linear(hidden_states, query_slices[i])
for i in range(self.config.pretraining_tp)
]
query_states = torch.cat(query_states, dim=-1)
key_states = [
F.linear(hidden_states, key_slices[i])
for i in range(self.config.pretraining_tp)
]
key_states = torch.cat(key_states, dim=-1)
value_states = [
F.linear(hidden_states, value_slices[i])
for i in range(self.config.pretraining_tp)
]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(
bsz, q_len, self.num_heads, self.head_dim
).transpose(1, 2)
key_states = key_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
value_states = value_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
# EM: Read from cache before position information is added
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
kv_seq_len = key_states.shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids
)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
bsz, nh, s_q, hd = query_states.shape
attn_weights = torch.matmul(
query_states, key_states.transpose(2, 3)
) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
# EM: Retrieve memories from cache or faiss indexes
if long_range_past_key_value is not None or faiss_indexes is not None:
if long_range_past_key_value is not None: # manual memories
k_cache, v_cache = long_range_past_key_value
k_cache = repeat_kv(k_cache, self.num_key_value_groups)
v_cache = repeat_kv(v_cache, self.num_key_value_groups)
s_cache = k_cache.size(-2)
k_cache = k_cache.to(key_states.device)
v_cache = v_cache.to(key_states.device)
# Normalize query and key vectors
q_n = query_states / vector_norm(
query_states, ord=2, dim=-1, keepdim=True
)
k_n = k_cache / vector_norm(k_cache, ord=2, dim=-1, keepdim=True)
sim = q_n.matmul(k_n.transpose(2, 3))
if s_cache < topk:
topk = s_cache # number of tokens in cache < topk
val, idx = torch.topk(sim, k=topk, dim=-1) # Retrieve topk memories
reshaped_idx = idx.reshape(bsz, nh, s_q * topk)
selected_k = k_cache.gather(
dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, hd)
)
selected_v = v_cache.gather(
dim=-2, index=reshaped_idx.unsqueeze(-1).expand(-1, -1, -1, hd)
)
elif faiss_indexes is not None: # FAISS indexes
kn_index, kv_index = faiss_indexes
q_n = query_states / vector_norm(
query_states, ord=2, dim=-1, keepdim=True
)
# One-hot encoding for layer, head to only retrieve memories from the same layer, head
one_hot_encodings = (
F.one_hot(
torch.arange(
0,
nh * self.config.num_hidden_layers,
device=query_states.device,
)
)
* 10
)
q_n = torch.concat(
[
rearrange(q_n, "b h s d -> b (h s) d", h=nh),
one_hot_encodings[nh * current_layer : nh * (current_layer + 1)]
.unsqueeze(0)
.repeat_interleave(repeats=query_states.size(-2), dim=-2),
],
dim=-1,
).squeeze()
if kn_index.ntotal / (nh * self.config.num_hidden_layers) < topk:
topk = kn_index.ntotal / (nh * self.config.num_hidden_layers)
val, idx = kn_index.search(q_n.to("cpu").detach().numpy(), k=topk)
val = torch.tensor(val - 100).reshape(bsz, nh, s_q, topk) #Similarity includes scale factor from one-hot encoding
reshaped_idx = torch.tensor(
idx % (kn_index.ntotal / (nh * self.config.num_hidden_layers))
).reshape(bsz, nh, s_q * topk)
selected_k = rearrange(
torch.tensor(kv_index.reconstruct_batch(idx.flatten()))[:, :hd],
"(h s) d -> 1 h s d",
h=nh,
).to(query_states.device)
selected_v = rearrange(
torch.tensor(kv_index.reconstruct_batch(idx.flatten()))[:, hd:],
"(h s) d -> 1 h s d",
h=nh,
).to(query_states.device)
attn_weight_cache = torch.matmul(
query_states, selected_k.transpose(2, 3)
) / math.sqrt(self.head_dim)
# EM: Mask by similarity
if mask_by_sim:
sim_mask = (
rearrange(~(val > sim_threshold).bool(), "b h s i -> b h (s i)")
.unsqueeze(-2)
.expand(-1, -1, s_q, -1)
).to(query_states.device)
attn_weight_cache = attn_weight_cache.masked_fill(
sim_mask, torch.finfo(query_states.dtype).min
)
# EM: Concatenate cache and current attention weights, values
attn_weights = torch.cat([attn_weight_cache, attn_weights], dim=-1)
value_states = torch.cat([selected_v, value_states], dim=-2)
min_val = torch.finfo(attn_weights.dtype).min
# EM: Create mask for external memories, queries only attend to their own memories
def _create_external_memories_mask(k, s_q, device, min_val=min_val):
mask = torch.ones(s_q, s_q * k, device=device, dtype=torch.float32)
for i in range(s_q):
mask[i, i * k : (i + 1) * k] = 0
filled = mask.masked_fill(mask.bool(), min_val)
return filled
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
# EM: Concatenate attention mask with external memories mask
if long_range_past_key_value is not None or faiss_indexes is not None:
memory_mask = _create_external_memories_mask(
k=topk, s_q=s_q, device=attn_weights.device
)
attention_mask = (
torch.cat(
[
memory_mask,
attention_mask.squeeze(dim=[0, 1]),
],
dim=1,
)
.unsqueeze(dim=0)
.unsqueeze(dim=1)
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32
).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(
self.hidden_size // self.config.pretraining_tp, dim=2
)
o_proj_slices = self.o_proj.weight.split(
self.hidden_size // self.config.pretraining_tp, dim=1
)
attn_output = sum(
F.linear(attn_output[i], o_proj_slices[i])
for i in range(self.config.pretraining_tp)
)
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
if not output_retrieved_memory_idx:
reshaped_idx = None
return attn_output, attn_weights, past_key_value, reshaped_idx
class ExtendedLlamaDecoderLayer(nn.Module):
"""Decoder Layer for LLaMA"""
def __init__(self, config: ExtendedLlamaConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = ExtendedLlamaAttention(config=config)
self.mlp = LlamaMLP(config)
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = LlamaRMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_retrieved_memory_idx: Optional[bool] = False,
use_cache: Optional[bool] = False,
long_range_past_key_value: Optional[Tuple[torch.Tensor]] = None,
faiss_indexes: Tuple = None,
mask_by_sim: bool = False,
sim_threshold: float = None,
topk: int = None,
current_layer=None,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
(
hidden_states,
self_attn_weights,
present_key_value,
selected_idx,
) = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
output_retrieved_memory_idx=output_retrieved_memory_idx,
use_cache=use_cache,
long_range_past_key_value=long_range_past_key_value,
faiss_indexes=faiss_indexes,
mask_by_sim=mask_by_sim,
sim_threshold=sim_threshold,
topk=topk,
current_layer=current_layer,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_retrieved_memory_idx:
outputs += (selected_idx,)
return outputs
LLAMA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`ExtendedLlamaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
LLAMA_START_DOCSTRING,
)
class LlamaPreTrainedModel(PreTrainedModel):
"""Wrapper class"""
config_class = ExtendedLlamaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["LlamaDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, ExtendedLlamaModel):
module.gradient_checkpointing = value
LLAMA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
LLAMA_START_DOCSTRING,
)
class ExtendedLlamaModel(LlamaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
Args:
config: LlamaConfig
"""
def __init__(self, config: ExtendedLlamaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = nn.ModuleList(
[ExtendedLlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]
)
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.mask_by_sim = config.mask_by_sim
self.sim_threshold = config.sim_threshold
self.topk = config.topk
self.use_external_mind = config.use_external_mind
self.use_external_mind_by_layer = config.use_external_mind_by_layer
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
).to(inputs_embeds.device)
combined_attention_mask = (
expanded_attn_mask
if combined_attention_mask is None
else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_retrieved_memory_idx: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_external_mind: Optional[bool] = None,
long_range_past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None,
faiss_indexes: Tuple = None,
topk: int = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
"""forward"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_retrieved_memory_idx = (
output_retrieved_memory_idx
if output_retrieved_memory_idx is not None
else False
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
use_external_mind = (
use_external_mind
if use_external_mind is not None
else self.use_external_mind
)
topk = topk if topk is not None else self.topk
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError(
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
)
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
# EM: Range of position ids is total seq length since we apply rotary pos emb after reading from cache
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
seq_length_with_past,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length_with_past)
else:
position_ids = position_ids.view(-1, seq_length_with_past).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past),
dtype=torch.bool,
device=inputs_embeds.device,
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
all_idx = () if output_retrieved_memory_idx else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = (
past_key_values[idx] if past_key_values is not None else None
)
long_range_past_key_value = (
long_range_past_key_values[idx]
if (
long_range_past_key_values is not None
and self.use_external_mind_by_layer[idx]
and use_external_mind is True
)
else None
)
if long_range_past_key_value is not None and faiss_indexes is not None:
raise NotImplementedError(
"""Using faiss and passing key value pairs
manually are mutually exclusive right now."""
)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, past_key_value, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
output_retrieved_memory_idx=output_retrieved_memory_idx,
use_cache=use_cache,
topk=topk,
long_range_past_key_value=long_range_past_key_value,
faiss_indexes=faiss_indexes,
mask_by_sim=self.mask_by_sim,
sim_threshold=self.sim_threshold,
current_layer=idx,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if output_retrieved_memory_idx:
idx = (
3
if (use_cache & output_attentions)
else 2
if (use_cache or output_attentions)
else 1
)
all_idx += (layer_outputs[idx],) # Record which memories were retrieved
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_cache,
all_hidden_states,
all_self_attns,
all_idx,
]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=(all_self_attns, all_idx), # EM: Return idx of retrieved memories
)
class ExtendedLlamaForCausalLM(LlamaPreTrainedModel):
"""LlamaForCausalLM"""
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config, external_memories:list=None):
super().__init__(config)
self.model = ExtendedLlamaModel(config)
self.vocab_size = config.vocab_size
self.tokenizer_all_special_ids = config.tokenizer_all_special_ids
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.use_external_mind = config.use_external_mind
self.memory_type = config.memory_type
self.memory_device = config.memory_device
self.remove_special_ids = config.remove_special_ids
self.memory_ids = None
self.memories = None
# EM: Memory token ids
if external_memories is not None:
self.memory_ids = external_memories
# Initialize weights and apply final processing
self.post_init()
# EM: Clear memory cache
def clear_memory(self):
"""Clear memory cache."""
self.memory_ids = None
self.memories = None
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
"""Set output embeddings."""
self.lm_head = new_embeddings
def set_decoder(self, decoder):
"""Set decoder."""
self.model = decoder
def get_decoder(self):
"""Get decoder."""
return self.model
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_retrieved_memory_idx: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_external_mind: Optional[bool] = None,
topk: int = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, LlamaForCausalLM
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
# EM: Generate key value cache once on first call
if (
self.memory_ids is not None and self.memories is None
):
self.memory_ids = torch.tensor([self.memory_ids], device=self.device) if type(self.memory_ids)==list else self.memory_ids
self.memories = self.generate_cache(
self.memory_ids, cache_type=self.memory_type,
)
# EM: Remove special tokens from memory cache
if self.remove_special_ids:
idx_to_remove = [
token_idx
for token_idx, token in enumerate(self.memory_ids[0])
if token in self.tokenizer_all_special_ids
]
if self.memory_type == "manual":
mask = torch.ones(self.memories[0][0].size(), dtype=torch.bool)
mask[:, :, idx_to_remove, :] = False
new_size = (
self.memories[0][0].size(0),
self.memories[0][0].size(1),
-1,
self.memories[0][0].size(3),
)
self.memories = [
(ks[mask].view(new_size), vs[mask].view(new_size))
for ks, vs in self.memories
]
else:
kn_index, kv_index = self.memories
all_idx_to_remove = [
[
i
for i in range(0, kn_index.ntotal)
if (
i
% (
kn_index.ntotal
/ (
self.config.num_attention_heads
* self.config.num_hidden_layers
)
)
)
== j
]
for j in idx_to_remove
]
kn_index.remove_ids(
np.array(all_idx_to_remove).flatten().astype("int64")
)
kv_index.remove_ids(
np.array(all_idx_to_remove).flatten().astype("int64")
)
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_retrieved_memory_idx = (
output_retrieved_memory_idx
if output_retrieved_memory_idx is not None
else False
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
use_external_mind = (
use_external_mind
if use_external_mind is not None
else self.use_external_mind
)
topk = topk if topk is not None else None
long_range_past_key_values = None
faiss_indexes = None
if hasattr(self, "memories") and isinstance(self.memories, list):
long_range_past_key_values = self.memories
elif hasattr(self, "memories"):
faiss_indexes = self.memories
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_retrieved_memory_idx=output_retrieved_memory_idx,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
long_range_past_key_values=long_range_past_key_values,
faiss_indexes=faiss_indexes,
use_external_mind=use_external_mind,
topk=topk,
)
hidden_states = outputs[0]
if self.config.pretraining_tp > 1:
lm_head_slices = self.lm_head.weight.split(
self.vocab_size // self.config.pretraining_tp, dim=0
)
logits = [
F.linear(hidden_states, lm_head_slices[i])
for i in range(self.config.pretraining_tp)
]
logits = torch.cat(logits, dim=-1)
else:
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# EM: Add method to generate key-value cache
def generate_cache(
self,
input_ids: torch.LongTensor,
stride: int = 512,
max_len: int = 3072,
cache_type: str = "manual",
):
"""Stride over memory inputs to get kv pairs"""
if cache_type not in ["manual", "faiss"]:
raise NotImplementedError(f"Cache type {cache_type} not implemented.")
prev_end_loc = 0
long_range_past_key_values = None
faiss_indexes = None
for b_idx in range(
0, input_ids.size(-1), stride
): # generate kv-pairs using stride
end_loc = min(b_idx + max_len, input_ids.size(-1))
trg_len = end_loc - prev_end_loc
subseq = input_ids[:, b_idx:end_loc].to(self.model.device)
with torch.inference_mode():
outputs = self.model(
subseq,
use_cache=True,
use_external_mind=False,
)
to_cache = [
(kv[0][:, :, -trg_len:], kv[1][:, :, -trg_len:])
for kv in outputs.past_key_values
]
long_range_past_key_values, faiss_indexes = self.cache(
to_cache,
cache_type,
long_range_past_key_values=long_range_past_key_values,
faiss_indexes=faiss_indexes,
)
prev_end_loc = end_loc
if end_loc == input_ids.size(-1):
break
if long_range_past_key_values is not None:
return long_range_past_key_values
else:
return faiss_indexes
# EM: Add method to cache key value pairs
def cache(
self,
to_cache: List,
cache_type: str = "manual",
long_range_past_key_values: List = None,
faiss_indexes: faiss.IndexFlatIP = None,
max_length_cache=100000,
verbose=False,
):
"""Cache key value pairs for Extended Mind attention."""
if (long_range_past_key_values is not None) & (faiss_indexes is not None):
raise NotImplementedError(
"Using faiss and passing key value pairs manually are mutually exclusive right now."
)
# To avoid spinning up a new index for each layer, we add one-hot encodings to the keys so that queries match with the appropriate layer, head
if cache_type == "faiss": # add one-hot encoding to match layer, head indices
one_hot_encodings = (
F.one_hot(
torch.arange(
0,
self.config.num_attention_heads * self.config.num_hidden_layers,
)
)
* 10
)
# New indices, one to store normalized keys with one-hot encodings, another to retrieve kv pairs without normalization
if faiss_indexes is None:
faiss_indexes = (
faiss.IndexFlatIP(
to_cache[0][0].size(-1) + one_hot_encodings.size(-1)
),
faiss.IndexFlatIP(to_cache[0][0].size(-1) * 2),
)
kn_index, kv_index = faiss_indexes
for l_idx, (k, v) in enumerate(to_cache):
k_n = (k / vector_norm(k, ord=2, dim=-1, keepdim=True)).to("cpu") #Normalize keys for cosine sim
# Indices are 2 dimensional, so flatten
# Add normalized keys with one-hot encodings
k_n = torch.concat(
[
rearrange(
k_n,
"b h s d -> b (h s) d",
h=self.config.num_attention_heads,
),
one_hot_encodings[
self.config.num_attention_heads
* l_idx : self.config.num_attention_heads
* (l_idx + 1)
]
.unsqueeze(0)
.repeat_interleave(repeats=k.size(-2), dim=-2),
],
dim=-1,
)
kn_index.add(k_n.squeeze().numpy())
# Add unnormalized keys and values
k = rearrange(
k, "b h s d -> b (h s) d", h=self.config.num_attention_heads
)
v = rearrange(
v, "b h s d -> b (h s) d", h=self.config.num_attention_heads
)
kv_index.add(
torch.concat([k.squeeze(), v.squeeze()], dim=1).to("cpu").numpy()
)
else:
# Simply use list to store key value pairs
if long_range_past_key_values is None:
long_range_past_key_values = [
(k.to(self.memory_device), v.to(self.memory_device))
for k, v in to_cache
]
else:
long_range_past_key_values = [
(
torch.concat(
[kv[0], to_cache[ind][0].to(self.memory_device)], dim=2
),
torch.concat(
[kv[1], to_cache[ind][1].to(self.memory_device)], dim=2
),
)
for ind, kv in enumerate(long_range_past_key_values)
]
if (
long_range_past_key_values is not None
): # set a limit on manual memory length
if long_range_past_key_values[0][0].size(-2) > max_length_cache:
long_range_past_key_values = [
(kv[0][:, :, -max_length_cache:], kv[1][:, :, -max_length_cache:])
for kv in long_range_past_key_values
]
if verbose:
if cache_type == "faiss":
print(f"{kn_index.ntotal} keys in faiss index")
else:
print(f"{long_range_past_key_values[0][0].size(-2)} cached kvs")
return (
long_range_past_key_values,
(kn_index, kv_index) if cache_type == "faiss" else None,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
if past_key_values:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"use_external_mind": kwargs.get("use_external_mind"), # EM: Add config here
"topk": kwargs.get("topk"),
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past
),
)
return reordered_past