File size: 13,848 Bytes
f8a6b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2d160f
 
 
 
 
 
 
f8a6b8e
 
c2d160f
 
f8a6b8e
c2d160f
 
f8a6b8e
 
c2d160f
 
 
 
f8a6b8e
c2d160f
f8a6b8e
 
 
c2d160f
 
f8a6b8e
 
 
 
 
 
c2d160f
 
 
 
f8a6b8e
 
c2d160f
 
 
 
 
 
 
 
 
 
f8a6b8e
c2d160f
f8a6b8e
 
 
c2d160f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This code has been adapted from Mosaic ML and Huggingface and inherits the above lisence.
# The original code can be found here:
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mpt/configuration_mpt.py

"""Extended Mind Mpt configuration"""
from typing import Optional, Union

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)


class ExtendedMptAttentionConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`ExtendedMptAttention`] class. It is used to instantiate
    attention layers according to the specified arguments, defining the layers architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the MPT
    [mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b) architecture. Most of the arguments are kept for backward
    compatibility with previous MPT models that are hosted on the Hub (previously with `trust_remote_code=True`).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        attn_type (`str`, *optional*, defaults to `"multihead_attention"`):
            type of attention to use. Options: `"multihead_attention"`, `"multiquery_attention"`.
        attn_pdrop (`float`, *optional*, defaults to 0.0):
            The dropout probability for the attention layers.
        attn_impl (`str`, *optional*, defaults to `"torch"`):
            The attention implementation to use. One of `"torch"`, `"flash"`, or `"triton"`.
        clip_qkv (`float`, *optional*):
            If not `None`, clip the queries, keys, and values in the attention layer to this value.
        softmax_scale (`float`, *optional*, defaults to `None`):
            If not `None`, scale the softmax in the attention layer by this value. If `None`, will default to
            `1/sqrt(hidden_size)`.
        prefix_lm (`bool`, *optional*, defaults to `False`)):
            Whether the model should operate as a Prefix LM. This requires passing an extra `prefix_mask` argument
            which indicates which tokens belong to the prefix. Tokens in the prefix can attend to one another
            bi-directionally. Tokens outside the prefix use causal attention.
        qk_ln (`bool`, *optional*, defaults to `False`):
            Whether to apply layer normalization to the queries and keys in the attention layer.
        attn_uses_sequence_id (`bool`, *optional*, defaults to `False`)):
            Whether to restrict attention to tokens that have the same token_type_ids. When the model is in `train`
            mode, this requires passing an extra *token_type_ids* argument which indicates which sub-sequence each
            token belongs to. Defaults to `False` meaning any provided *token_type_ids* will be ignored.
        alibi (`bool`, *optional*, defaults to `True`):
            Whether or not to use the alibi bias instead of positional embedding.
        alibi_bias_max (`int`, *optional*, defaults to 8):
            The maximum value of the alibi bias.

        #### Memory Configuration ####
        topk (`int`, *optional*, defaults to `10`):
            Number of external memories for each query token to retrieve and attend to.
        memory_type (`string`, *optional*, defaults to `manual`):
            Whether to store external memories manually or in a vector database.
        memory_device (`string`, *optional*, defaults to `cpu`):
            Specify device to store memory.
        mask_by_sim (`bool`, *optional*, defaults to `True`):
            Whether or not to mask retrieved memories by similarity.
        sim_threshold (`float`, *optional*, defaults to `0.25`):
            Threshold for masking retrieved memories.
        tokenizer_all_special_ids (`list`, *optional*, defaults to `[0, 50278]`):
            Ids for special tokens to remove from memories.
        remove_special_tokens (`bool`, *optional*, defaults to `True`):
            Remove memories that correspond to tokenizer special ids.
        #### Memory Configuration ####

    """

    def __init__(
        self,
        attn_type="multihead_attention",
        attn_pdrop=0,
        attn_impl="torch",
        clip_qkv=None,
        softmax_scale=None,
        prefix_lm=False,
        qk_ln=False,
        attn_uses_sequence_id=False,
        alibi=True,
        alibi_bias_max=8,
        topk=10,
        memory_type="manual",
        memory_device="cpu",
        mask_by_sim=True,
        sim_threshold=0.25,
        tokenizer_all_special_ids=[0, 50278],
        remove_special_ids=False,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.attn_type = attn_type
        self.attn_pdrop = attn_pdrop
        self.attn_impl = attn_impl
        self.clip_qkv = clip_qkv
        self.softmax_scale = softmax_scale
        self.prefix_lm = prefix_lm
        self.attn_uses_sequence_id = attn_uses_sequence_id
        self.alibi = alibi
        self.qk_ln = qk_ln
        self.alibi_bias_max = alibi_bias_max
        self.topk = topk
        self.memory_type = memory_type
        self.memory_device = memory_device
        self.mask_by_sim = mask_by_sim
        self.sim_threshold = sim_threshold
        self.tokenizer_all_special_ids = tokenizer_all_special_ids
        self.remove_special_ids = remove_special_ids

        if attn_type not in ["multihead_attention", "multiquery_attention"]:
            raise ValueError(
                f"`attn_type` has to be either `multihead_attention` or `multiquery_attention`. Received: {attn_type}"
            )

    @classmethod
    def from_pretrained(
        cls, pretrained_model_name_or_path, **kwargs
    ) -> "PretrainedConfig":
        cls._set_token_in_kwargs(kwargs)

        config_dict, kwargs = cls.get_config_dict(
            pretrained_model_name_or_path, **kwargs
        )

        if config_dict.get("model_type") == "mpt":
            config_dict = config_dict["attn_config"]

        if (
            "model_type" in config_dict
            and hasattr(cls, "model_type")
            and config_dict["model_type"] != cls.model_type
        ):
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


class ExtendedMptConfig(PretrainedConfig):
    """
    This is the configuration class to store the configuration of a [`MptModel`]. It is used to instantiate a Mpt model
    according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to the Mpt-7b architecture
    [mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        d_model (`int`, *optional*, defaults to 2048):
            Dimensionality of the embeddings and hidden states.
        n_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        n_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        expansion_ratio (`int`, *optional*, defaults to 4):
            The ratio of the up/down scale in the MLP.
        max_seq_len (`int`, *optional*, defaults to 2048):
            The maximum sequence length of the model.
        vocab_size (`int`, *optional*, defaults to 50368):
            Vocabulary size of the Mpt model. Defines the maximum number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`MptModel`]. Check [this
            discussion](https://huggingface.co/bigscience/mpt/discussions/120#633d28389addb8530b406c2a) on how the
            `vocab_size` has been defined.
        resid_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout probability applied to the attention output before combining with residual.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon to use in the layer normalization layers.
        emb_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout probability for the embedding layer.
        learned_pos_emb (`bool`, *optional*, defaults to `False`):
            Whether to use learned positional embeddings.
        attn_config (`dict`, *optional*):
            A dictionary used to configure the model's attention module.
        init_device (`str`, *optional*):
            The device to use for parameter initialization. Defined for backward compatibility
        logit_scale (`float`, *optional*):
            If not None, scale the logits by this value.
        no_bias (`bool`, *optional*, defaults to `True`):
            Whether to use bias in all linear layers.
        verbose (`int`, *optional*, defaults to 0):
            The verbosity level to use for logging. Used in the previous versions of MPT models for logging. This
            argument is deprecated.
        embedding_fraction (`float`, *optional*, defaults to 1.0):
            The fraction to scale the gradients of the embedding layer by.
        norm_type (`str`, *optional*, defaults to `"low_precision_layernorm"`):
            Type of layer norm to use. All MPT models uses the same layer norm implementation. Defined for backward
            compatibility.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

        #### Memory Configuration ####
        use_external_mind (`bool`, *optional*, defaults to `True`):
            Whether to attend to external memories.
        use_external_mind_by_layer (`List[bool]`, *optional*, defaults to List[`True`, ..., `True`]):
            Whether to attend to external memories, on each decoder layer.
        #### Memory Configuration ####

    Example:

    ```python
    >>> from transformers import MptConfig, MptModel

    >>> # Initializing a Mpt configuration
    >>> configuration = MptConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = MptModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    """

    model_type = "extended-mpt"
    attribute_map = {
        "num_attention_heads": "n_heads",
        "hidden_size": "d_model",
        "num_hidden_layers": "n_layers",
    }

    def __init__(
        self,
        d_model: int = 4096,
        n_heads: int = 32,
        n_layers: int = 32,
        expansion_ratio: int = 4,
        max_seq_len_inference: int = 2048,
        max_seq_len_train: int = 2048,
        vocab_size: int = 50432,
        resid_pdrop: float = 0.0,
        layer_norm_epsilon: float = 1e-5,
        emb_pdrop: float = 0.0,
        learned_pos_emb: bool = True,
        attn_config: ExtendedMptAttentionConfig = None,
        init_device: str = "cpu",
        logit_scale: Optional[Union[float, str]] = None,
        no_bias: bool = True,
        verbose: int = 0,
        embedding_fraction: float = 1.0,
        norm_type: str = "low_precision_layernorm",
        use_cache: bool = False,
        initializer_range=0.02,
        use_external_mind: bool = True,
        use_external_mind_by_layer: list[bool] = [True for _ in range(32)],
        **kwargs,
    ):
        if attn_config is None:
            self.attn_config = ExtendedMptAttentionConfig()
        elif not isinstance(attn_config, ExtendedMptAttentionConfig):
            self.attn_config = ExtendedMptAttentionConfig(**attn_config)
        else:
            self.attn_config = attn_config
        self.d_model = d_model
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.expansion_ratio = expansion_ratio
        self.max_seq_len = max_seq_len_inference
        self.max_seq_len_train = max_seq_len_train
        self.vocab_size = vocab_size
        self.resid_pdrop = resid_pdrop
        self.emb_pdrop = emb_pdrop
        self.learned_pos_emb = learned_pos_emb
        self.init_device = init_device
        self.logit_scale = logit_scale
        self.no_bias = no_bias
        self.verbose = verbose
        self.embedding_fraction = embedding_fraction
        self.norm_type = norm_type
        self.layer_norm_epsilon = layer_norm_epsilon
        self.use_cache = use_cache
        self.initializer_range = initializer_range
        self.use_external_mind = use_external_mind
        self.use_external_mind_by_layer = use_external_mind_by_layer
        super().__init__(**kwargs)