BiRefNet / handler.py
not-lain's picture
Update handler.py
a214553 verified
from typing import Dict, List, Any
import base64
from io import BytesIO
import torch
from loadimg import load_img
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
class EndpointHandler():
def __init__(self, path=""):
self.birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
self.birefnet.to(device)
def __call__(self, data: Dict[str, Any]):
"""
data args:
inputs (:obj: `str`)
date (:obj: `str`)
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
print('data["inputs"] = ',data["inputs"])
image = load_img(data["inputs"]).convert("RGB")
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
# buffered = BytesIO()
# image.save(buffered, format="JPEG")
# img_str = base64.b64encode(buffered.getvalue())
return image