|
from typing import Dict, List, Any |
|
import base64 |
|
from io import BytesIO |
|
import torch |
|
from loadimg import load_img |
|
from torchvision import transforms |
|
from transformers import AutoModelForImageSegmentation |
|
|
|
torch.set_float32_matmul_precision(["high", "highest"][0]) |
|
|
|
birefnet = AutoModelForImageSegmentation.from_pretrained( |
|
"ZhengPeng7/BiRefNet", trust_remote_code=True |
|
) |
|
birefnet.to("cuda") |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
transform_image = transforms.Compose( |
|
[ |
|
transforms.Resize((1024, 1024)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.birefnet = AutoModelForImageSegmentation.from_pretrained( |
|
"ZhengPeng7/BiRefNet", trust_remote_code=True |
|
) |
|
self.birefnet.to(device) |
|
|
|
def __call__(self, data: Dict[str, Any]): |
|
""" |
|
data args: |
|
inputs (:obj: `str`) |
|
date (:obj: `str`) |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
print('data["inputs"] = ',data["inputs"]) |
|
image = load_img(data["inputs"]).convert("RGB") |
|
image_size = image.size |
|
input_images = transform_image(image).unsqueeze(0).to("cuda") |
|
|
|
with torch.no_grad(): |
|
preds = birefnet(input_images)[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
pred_pil = transforms.ToPILImage()(pred) |
|
mask = pred_pil.resize(image_size) |
|
image.putalpha(mask) |
|
|
|
|
|
|
|
return image |