endpoint support for the API.
Browse files- handler.py +54 -0
- requirements.txt +13 -0
handler.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import base64
|
3 |
+
from io import BytesIO
|
4 |
+
import torch
|
5 |
+
from loadimg import load_img
|
6 |
+
from torchvision import transforms
|
7 |
+
from transformers import AutoModelForImageSegmentation
|
8 |
+
|
9 |
+
torch.set_float32_matmul_precision(["high", "highest"][0])
|
10 |
+
|
11 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
12 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
13 |
+
)
|
14 |
+
birefnet.to("cuda")
|
15 |
+
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
|
18 |
+
transform_image = transforms.Compose(
|
19 |
+
[
|
20 |
+
transforms.Resize((1024, 1024)),
|
21 |
+
transforms.ToTensor(),
|
22 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
23 |
+
]
|
24 |
+
)
|
25 |
+
|
26 |
+
class EndpointHandler():
|
27 |
+
def __init__(self, path=""):
|
28 |
+
self.birefnet = AutoModelForImageSegmentation.from_pretrained(
|
29 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
30 |
+
)
|
31 |
+
self.birefnet.to(device)
|
32 |
+
|
33 |
+
def __call__(self, data: Dict[str, Any]):
|
34 |
+
"""
|
35 |
+
data args:
|
36 |
+
inputs (:obj: `str`)
|
37 |
+
date (:obj: `str`)
|
38 |
+
Return:
|
39 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
40 |
+
"""
|
41 |
+
image = load_img(data["inputs"]).convert("RGB")
|
42 |
+
image_size = image.size
|
43 |
+
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
44 |
+
# Prediction
|
45 |
+
with torch.no_grad():
|
46 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
47 |
+
pred = preds[0].squeeze()
|
48 |
+
pred_pil = transforms.ToPILImage()(pred)
|
49 |
+
mask = pred_pil.resize(image_size)
|
50 |
+
image.putalpha(mask)
|
51 |
+
# buffered = BytesIO()
|
52 |
+
# image.save(buffered, format="JPEG")
|
53 |
+
# img_str = base64.b64encode(buffered.getvalue())
|
54 |
+
return image
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
loadimg
|
2 |
+
spaces
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
opencv-python
|
6 |
+
tqdm
|
7 |
+
timm
|
8 |
+
prettytable
|
9 |
+
scipy
|
10 |
+
scikit-image
|
11 |
+
kornia
|
12 |
+
transformers
|
13 |
+
huggingface_hub
|