--- license: apache-2.0 --- # VideoGPT - A Spatiotemporal Video Captioning Model Vision Encoder Model: [timesformer-base-finetuned-k600](https://huggingface.co/facebook/timesformer-base-finetuned-k600) \ Text Decoder Model: [gpt2](https://huggingface.co/gpt2) Dataset used: [MSR-VTT](https://paperswithcode.com/dataset/msr-vtt) #### Results: Epoch 1 finished with average loss: 3.8702 Epoch 2 finished with average loss: 3.2515 Epoch 3 finished with average loss: 2.8516 #### Example Inference Code: ```python import av import numpy as np import torch from transformers import AutoImageProcessor, AutoTokenizer, VisionEncoderDecoderModel device = "cuda" if torch.cuda.is_available() else "cpu" # load pretrained processor, tokenizer, and model image_processor = AutoImageProcessor.from_pretrained("notbdq/videogpt") tokenizer = AutoTokenizer.from_pretrained("notbdq/videogpt") model = VisionEncoderDecoderModel.from_pretrained("notbdq/videogpt").to(device) video_path = "/kaggle/input/darthvader1/darthvadersurfing.mp4" container = av.open(video_path) # extract evenly spaced frames from video seg_len = container.streams.video[0].frames clip_len = model.config.encoder.num_frames indices = set(np.linspace(0, seg_len, num=clip_len, endpoint=False).astype(np.int64)) frames = [] container.seek(0) for i, frame in enumerate(container.decode(video=0)): if i in indices: frames.append(frame.to_ndarray(format="rgb24")) # generate caption gen_kwargs = { "max_length": 20, } pixel_values = image_processor(frames, return_tensors="pt").pixel_values.to(device) tokens = model.generate(pixel_values, **gen_kwargs) caption = tokenizer.batch_decode(tokens, skip_special_tokens=True)[0] print(caption) # man is surfing in the ocean and doing tricks on a surfboard ``` #### Author Information: 🐙 [GitHub](https://github.com/notlober) \ 🤝 [LinkedIn](https://www.linkedin.com/in/selahattin-baki-damar-6bb38128a/)