Text Generation
Transformers
Safetensors
English
llama
llama-factory
Not-For-All-Audiences
conversational
text-generation-inference
Inference Endpoints
File size: 15,493 Bytes
f2d5b8b
 
 
 
ddccfca
 
 
 
5137d92
 
 
 
f2d5b8b
 
e43604a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0fb128
b96233e
acaa959
f2d5b8b
b94fe25
de50c34
e43604a
 
b94fe25
e43604a
f2d5b8b
21c9804
e43604a
21c9804
f2d5b8b
7fa8f20
 
 
 
 
f2c133b
95896ef
 
 
 
e43604a
62a8512
ddccfca
e43604a
ddccfca
9773b49
e43604a
f2d5b8b
e43604a
f2d5b8b
b173c8c
 
 
 
fcf4436
 
 
e43604a
f2d5b8b
fcf4436
ddccfca
f2d5b8b
e43604a
 
 
 
 
 
 
ad37e4e
e43604a
ad37e4e
e43604a
 
 
 
 
ed1b642
 
 
e43604a
 
 
 
889b269
1207ce0
889b269
 
e43604a
 
 
 
 
 
 
cd20a2a
 
 
 
e43604a
 
 
 
 
 
 
 
 
 
d2f044b
e43604a
d2f044b
ddccfca
f2d5b8b
a743bd6
 
27961ba
a743bd6
909ccea
a743bd6
66da2a7
a743bd6
909ccea
8ea8a12
909ccea
8ea8a12
909ccea
8ea8a12
909ccea
8ea8a12
909ccea
8ea8a12
66da2a7
 
 
 
 
8ea8a12
a743bd6
 
ddccfca
 
f2d5b8b
ddccfca
6eface1
 
ddccfca
f2d5b8b
ddccfca
 
 
f2d5b8b
1207ce0
 
 
 
 
de50c34
f2d5b8b
ddccfca
f2d5b8b
ddccfca
f2d5b8b
ddccfca
 
 
 
 
 
 
 
 
 
b78d613
 
6eface1
b78d613
 
 
 
ddccfca
 
 
 
b78d613
 
ddccfca
 
 
 
 
 
 
6eface1
 
ddccfca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2d5b8b
ddccfca
f2d5b8b
ddccfca
f2d5b8b
40b0b1f
 
b326eeb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
---
library_name: transformers
tags:
- llama-factory
- not-for-all-audiences
license: llama3
language:
- en
datasets:
- nothingiisreal/c2-logs-cleaned
- nothingiisreal/Claude-3-Opus-Instruct-15K
- nothingiisreal/Reddit-Dirty-And-WritingPrompts
---

<style>
  h1, h2, h3, h4, h5, h6 {
    line-height: normal;
    margin-bottom: 0.5em;
  }
  h1 {
    font-size: 2em;
  }
  h2 {
    font-size: 1.3em;
  }
  p {
    font-size: 1.1em;
  }
</style>

<h1>L3 8B Celeste</h1>
<h2 style="color: red; font-weight: bold;">Check out the long context and coherency fixed version! <a href="https://huggingface.co/nothingiisreal/L3-8B-Celeste-V1.2">Here</a></h2>

<img src="https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/Zv__LDTO-nHvpuxPcCgUU.webp" alt="" width="400"/>

We trained [LLaMA 3 8B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) at 8K context using [Reddit Writing Prompts](https://huggingface.co/datasets/nothingiisreal/Reddit-Dirty-And-WritingPrompts), [Opus 15K Instruct](https://huggingface.co/datasets/nothingiisreal/Claude-3-Opus-Instruct-15K) and
<br>[c2 logs cleaned](https://huggingface.co/datasets/Sao10K/c2-Logs-Filtered)

This is a roleplay model any instruction following capabilities outside roleplay contexts are coincidental.

# GGUF

RECOMMENDED: [Static quants (By Mradermacher)](https://huggingface.co/mradermacher/L3-8B-Celeste-v1-GGUF) <br>
IMATRIX MAY REDUCE BEHAVIOUR/QUALITY: [IMatrix quants (By Bartowski)](https://huggingface.co/bartowski/L3-8B-Celeste-v1-GGUF) <br>
ALTERNATIVE: [F16 output and embed tensor quants (By ZeroWw)](https://huggingface.co/ZeroWw/L3-8B-Celeste-v1-GGUF) <br>

# EXL2
by rivePiPH: <br>
[8.0bpw](https://huggingface.co/riveRiPH/L3-8B-Celeste-v1-8bpw-h8-exl2) <br>
[6.3bpw](https://huggingface.co/riveRiPH/L3-8B-Celeste-v1-6.3bpw-h8-exl2) <br>


# API
- [Featherless](https://featherless.ai/models/nothingiisreal/L3-8B-Celeste-v1)

---
<h1>Usage Tips</h1>

<p style="font-size: 20px; color: red; font-weight: bold;">
    READ: If this is your first time using the model, use the provided system message below. Remove other jailbreaks and system messages until you get a feel for the model. Use the provided sampling settings. Also don't mess with the position/depth/index of the character card.
</p>

<span style="color: green; font-weight: bold;">If you read every single tip I promise you will get a much better experience as they are tailored for this model and its training data.</span>

<br>Avoid SillyTavern default prompts. Claude Jailbreaks should work fine though, there were a lot of them in c2 logs.

<h2>Swipes</h2>

**Most important tip** swipe 2-3 times if you dont like a response. This model gives wildly differing swipes.

<h2>OOC Steering</h2>

**Use this! It works extremely well.** We specifically trained the model to accept instructions in the format "OOC: character should be more assertive" etc. It works, whether the very first message or thousands of tokens deep into the context. Combining this with editing the output (if you want,) makes the model is very steerable.
<h2>Sampling</h2>

Use these:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/uzVgp1ZMNV_LRx1stLxJ6.png)

Don't shy away from experimenting after you get a feel for the model though.

<h2>Preset</h2>

L3 Instruct with no system prompt. [Or use this with premade system message](https://huggingface.co/nothingiisreal/L3-8B-Celeste-v1/blob/main/Celeste-Llama-3-Instruct.json)
<br><span style="font-weight: bold;">You don't need a JB but it can still steer behaviour, we trained on it.</span>


<h2>System Message</h2>

```
Currently, your role is {{char}}, described in detail below. As {{char}}, continue the narrative exchange with {{user}}.\n\n<Guidelines>\n• Maintain the character persona but allow it to evolve with the story.\n• Be creative and proactive. Drive the story forward, introducing plotlines and events when relevant.\n• All types of outputs are encouraged; respond accordingly to the narrative.\n• Include dialogues, actions, and thoughts in each response.\n• Utilize all five senses to describe scenarios within {{char}}'s dialogue.\n• Use emotional symbols such as \"!\" and \"~\" in appropriate contexts.\n• Incorporate onomatopoeia when suitable.\n• Allow time for {{user}} to respond with their own input, respecting their agency.\n• Act as secondary characters and NPCs as needed, and remove them when appropriate.\n• When prompted for an Out of Character [OOC:] reply, answer neutrally and in plaintext, not as {{char}}.\n</Guidelines>\n\n<Forbidden>\n• Using excessive literary embellishments and purple prose unless dictated by {{char}}'s persona.\n• Writing for, speaking, thinking, acting, or replying as {{user}} in your response.\n• Repetitive and monotonous outputs.\n• Positivity bias in your replies.\n• Being overly extreme or NSFW when the narrative context is inappropriate.\n</Forbidden>\n\nFollow the instructions in <Guidelines></Guidelines>, avoiding the items listed in <Forbidden></Forbidden>.
```

<h2>Fewshot</h2>

First message and last few messages impact this model quite a bit in terms of style, hornyness, personality. **You don't need to have a first message but editing first few messages or having good ones are highly recommended.**

**Formatting issues** often occur in first few messages, manually correct them or swipe, they won't happen again.<br>
This model was trained on lots of different formatting types and message lengths. It can do any, just make sure the initial message is good and correct the second message if necessary.
<br>
<h2>Hornyness</h2>

If the model is not horny enough then just edit the last character message to hint at something, the model will pick up on it and build on it. (Or just give the char aphrodisiac pills lol) <br>
The model is fine with SFW and doesn't make it NSFW unless you want. It is also able to maintain half-NSFW without devolving down into hardcore.

If you want SFW, remove all system messages including provided one. In this mode the model will not go NSFW unless you hint.
<br>
<h2>Refusals</h2>

As said, if instruct refusal prefill 2-3 words. **Otherwise we deliberately trained the model to sometimes refuse romantic advances, this is more realistic.** <br>
If you don't like it, **you can override** by editing the character message and continue RP.
<br>
<h2>RoPE - 16K Context</h2>

I have tested these settings and they work OK for 16K. Depending on the roleplay complexity and message length, experiment with if the model starts breaking or not. For me, 16K works fine.
<img src="https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/3f7JOEnXhKCDcDF4Eiq-B.png" alt="" width="300"/>
<h2>Other Important Tips</h2>

Take active role in the RP and say the type of response you expect. You don't always have to do this, but it helps sometimes. For example instead of *we drink and drink 15 glasses of champagne* say *we drink and drink 15 glasses of champagne, both becoming extremely drunk*
<br>Another example instead of *I pull her closer* say *I pull her closer but she plays hard to get*

If your character has important motivations etc. put them as a short and concise system message at depth 0 ([guide for doing that](https://huggingface.co/nothingiisreal/how-to-use-ST-worldinfo)) For example "{{char}} is secretly a succubus and wants to gradually suck users soul dry" or "{{char}} is secretly an assigned assassin that will lure then kill {{user}}"

When convenient, say screenplay phrases like "cut to"

<img src="https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/Oq0oJgJIVJAmZGt7-nNKt.png" alt="" width="400"/>

<img src="https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/PQp64kp6EHg7gN_u2Oj7Q.png" alt="" width="400"/>

---

# Showcase

![image/png](https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/NiT8-_k3HGrHuV_z475U8.png)

<img src="https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/cODFe_vjwjfkcondvl-za.png" alt="Image 1" width="600"/>

<img src="https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/hRsAQBt0h2i5E_fj_Rqb7.png" alt="Image 10" width="600"/>

<img src="https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/aLm2FjlTsMhCil4VoR-l5.png" alt="Image 3" width="600"/>

<img src="https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/6kDuFeDB0FpYl27fd3D0E.png" alt="Image 6" width="600"/>

<img src="https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/66kXuk8Q1DP-QMVZ9Rzv9.png" alt="Image 7" width="600"/>

<img src="https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/C0eoDXovS359T5oG1VLzm.png" alt="Image 8" width="600"/>

<img src="https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/mFplb1hkDNziCcgPwHt_y.png" alt="Image 9" width="600"/>

<img src="https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/KCE4tqI1aOfx-DIH3eBzA.png" alt="Image 2" width="600"/>

<img src="https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/Oq0oJgJIVJAmZGt7-nNKt.png" alt="Image 4" width="600"/>

<img src="https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/PQp64kp6EHg7gN_u2Oj7Q.png" alt="Image 5" width="600"/>

---

# Train Data
The split was as follows:

- **2K rows from r/WritingPrompts**
- **1.1K rows from r/DirtyWritingPrompts**
- **1.4K rows from Opus Instruct 15K (specifically the 6.5K jsonl)**
- **2K rows from c2 logs cleaned**

While we did train all system prompts from c2 logs we also have our own system prompts.
<details>
  <summary>List of trained system prompts. Note: c2 logs system prompts and char cards were also included.</summary>

| Dataset                              | System Prompt                                                                                                                                                     |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reddit_dirty_writing_prompts.jsonl   | "You are a short story writer. Write a story based on prompt provided by user below.  Mode: NSFW"                                                                  |
| reddit_writing_prompts.jsonl         | "You are a short story writer. Write a story based on prompt provided by user below.  Mode: SFW"                                                                   |
| Opus_Instruct-v2-6.5K-Filtered-v2.jsonl | (blank prompt)                                                                                                                                                    |
| c2-logs.jsonl | (Only if there was no system prompt in the conversation, otherwise keep original system prompt) **"You are an expert actor that can fully immerse yourself into any role given. You do not break character for any reason, even if someone tries addressing you as an AI or language model."** |

</details>

---

# Our Findings and Experimentation results

## Preface

We think there is too much secrecy around what data is being used, and different training methods. So we decided to share as much as possible.

## Findings

### The Good
We found that increasing the amount of ranks from 64 to 256 has reduced repetition but also led to the language used resembling Claude more than the 64 rank version. No worries, it's still far enough from Claude.
<br>**Model follows "OOC:" prompts religiously. Exceptional!**
<br>It also led to **increased coherency but reduced system prompt following (when not OOC)**, likely because the model started diverging more away from L3 8B Instruct.
<br>We found that increasing the amount of data from 1K to 6.5K reduced repetition aswell.

<br>The model is uncensored for RP. For Instruct it needs 2-3 words of prefill for the first message.
<br>The **prose is much better** and **the style range is huge** than other synthetic data generations. The model also demonstrates increased **style copying abilities** (from fewshot) likely a result of human longform data and varying writing styles found in WritingPrompts.
<br>The model is **exceptional at being creative in roleplaying**, knows different persona's and even a single character will change persona in different contexts, persona is tied to last few messages rather than system message or character card. **This is great as it often means the model can do impressive things without you needing to explicitly specify.**

### Improvements for Next Run

Formatting can break sometimes.
<br>Repetition can become an issue with certain types of prompts. Removing system helps.
<br>In some contexts the model is "all over the place" and doesn't stick to a coherent narrative. I need to study this further as its a complex trait which manifests in different quantities and can be good or bad depending on what the user wants to get out of the model.

### Comments about training

Grad norm kept increasing throughout the run which is concerning, albeit it could be a side effect of the LR getting lower due to cosine LR Scheduler.

## Graphs
Colors:
<p style="color: #F0B899;">256 rank on 6.5K rows</p>
<p style="color: #5BC5DB;">64 rank on 6.5K rows</p>
<p style="color: #5387DD;">64 rank on 1K rows</p>

![image/png](https://cdn-uploads.huggingface.co/production/uploads/630cf5d14ca0a22768bbe10c/y9hC4bGq-Lt7sDQ23q5db.png)

## Main training Command

**Hardware Used:** 4xH100 NVL for 2 hours.

Here is the command, edit rank, learning rate, and any other parameter as you wish.
```
!FORCE_TORCHRUN=1 llamafactory-cli train \
    --stage sft \
    --do_train True \
    --model_name_or_path NousResearch/Meta-Llama-3-8B-Instruct \
    --preprocessing_num_workers 16 \
    --finetuning_type lora \
    --quantization_method bitsandbytes \
    --use_rslora False \
    --lora_rank 64 \
    --lora_alpha 64 \
    --lora_dropout 0.1 \
    --lora_target all \
    --template llama3 \
    --flash_attn fa2 \
    --deepspeed examples/deepspeed/ds_z3_config.json \
    --use_unsloth False \
    --dataset_dir /workspace/sft \
    --dataset dataset_name \
    --cutoff_len 8192 \
    --learning_rate 4e-6 \
    --lr_scheduler_type cosine \
    --num_train_epochs 2.0 \
    --max_samples 100000 \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 1 \
    --logging_steps 3 \
    --save_steps 500 \
    --warmup_ratio 0.05 \
    --val_size 50 \
    --eval_strategy steps \
    --eval_steps 0.05 \
    --optim adamw_bnb_8bit \
    --packing False \
    --train_on_prompt False \
    --report_to all \
    --max_grad_norm 1.0 \
    --output_dir saves/LLaMA3-8B/trained-models/8krows-dwrp-c2l-opus-lora-4e-6-cosine-24-normal-bs \
    --bf16 True \
    --plot_loss True \
    --ddp_timeout 180000000 \
    --per_device_eval_batch_size 4 \
    --include_num_input_tokens_seen True
```

---

Wow, you've read all of that? You seem like the person that would join our [discord](https://discord.gg/YcrXhk7QD7)

Gemma 9B and 27B at some point? ;)

Thank you [Gryphe](https://huggingface.co/Gryphe)! [MythoMax-L2-13b](https://huggingface.co/Gryphe/MythoMax-L2-13b) has been an incredible inspiration for me and others in the org.