--- language: - en license: apache-2.0 datasets: - nov3630/Data4RLCoder --- # Model Description RLRetriever is a retriever for repository-level code completion which disregard seemingly useful yet ultimately unhelpful reference code snippets, focusing on those more likely to contribute to accurate code generation. - **Developed by:** Sun Yat-sen University & Huawei Cloud Computing Technologies Co., Ltd. - **Shared by [Optional]:** Hugging Face - **Model type:** Feature Engineering - **Language(s) (NLP):** en - **License:** Apache-2.0 - **Related Models:** - **Parent Model:** RoBERTa - **Resources for more information:** - [Associated Paper](https://arxiv.org/abs/2407.19487) # Citation **BibTeX:** ``` @misc{wang2024rlcoderreinforcementlearningrepositorylevel, title={RLCoder: Reinforcement Learning for Repository-Level Code Completion}, author={Yanlin Wang and Yanli Wang and Daya Guo and Jiachi Chen and Ruikai Zhang and Yuchi Ma and Zibin Zheng}, year={2024}, eprint={2407.19487}, archivePrefix={arXiv}, primaryClass={cs.SE}, url={https://arxiv.org/abs/2407.19487}, } ``` # Get Started Use the code below to get started with the model.
Click to expand ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("nov3630/RLRetriever") model = AutoModel.from_pretrained("nov3630/RLRetriever") ```