Upload 2 files
Browse files- wavvae 2.zip +3 -0
- wavvae3.py +268 -0
wavvae 2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e65acb0f186a7d25a66b8211773cf5a1030d1edd972f11882cf5ca2135521dd
|
3 |
+
size 43138
|
wavvae3.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import filecmp
|
3 |
+
import multiprocessing
|
4 |
+
import os
|
5 |
+
import subprocess
|
6 |
+
import librosa
|
7 |
+
from functools import partial
|
8 |
+
from multiprocessing import Pool, Process
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
import torch.distributed as dist
|
15 |
+
from torch.optim import AdamW
|
16 |
+
|
17 |
+
from modules.vocoder.commons.stft_loss import MultiResolutionSTFTLoss
|
18 |
+
from modules.vocoder.hifigan.hifigan import MultiPeriodDiscriminator, MultiScaleDiscriminator, \
|
19 |
+
generator_loss, feature_loss, discriminator_loss
|
20 |
+
from modules.vocoder.hifigan.mel_utils import mel_spectrogram
|
21 |
+
from modules.vocoder.univnet.mrd import MultiResolutionDiscriminator
|
22 |
+
from modules.tts.wavvae.decoder.wavvae_v3 import WavVAE_V3
|
23 |
+
from tasks.tts.utils.audio import torch_wav2spec
|
24 |
+
from tasks.tts.utils.audio.align import mel2token_to_dur
|
25 |
+
from utils.commons.ckpt_utils import load_ckpt
|
26 |
+
from utils.commons.hparams import hparams
|
27 |
+
|
28 |
+
from attrdict import AttrDict
|
29 |
+
from tasks.tts.dataset_mixin import TTSDatasetMixin
|
30 |
+
from utils.commons.base_task import BaseTask
|
31 |
+
from utils.commons.import_utils import import_module_bystr
|
32 |
+
from utils.nn.schedulers import WarmupSchedule, CosineSchedule
|
33 |
+
|
34 |
+
|
35 |
+
class WavVAETask(TTSDatasetMixin, BaseTask):
|
36 |
+
def __init__(self):
|
37 |
+
super().__init__()
|
38 |
+
self.dataset_cls = import_module_bystr(hparams['dataset_cls'])
|
39 |
+
self.val_dataset_cls = import_module_bystr(hparams['val_dataset_cls'])
|
40 |
+
self.processer_fn = import_module_bystr(hparams['processer_fn'])
|
41 |
+
self.build_fast_dataloader = import_module_bystr(hparams['build_fast_dataloader'])
|
42 |
+
self.hparams = hparams
|
43 |
+
self.config = AttrDict(hparams)
|
44 |
+
|
45 |
+
# Online load mel with GPU
|
46 |
+
sample_rate = hparams["audio_sample_rate"]
|
47 |
+
fft_size = hparams["win_size"]
|
48 |
+
win_size = hparams["win_size"]
|
49 |
+
hop_size = hparams["hop_size"]
|
50 |
+
num_mels = hparams["audio_num_mel_bins"]
|
51 |
+
fmin = hparams["fmin"]
|
52 |
+
fmax = hparams["fmax"]
|
53 |
+
mel_basis = librosa.filters.mel(
|
54 |
+
sr=sample_rate, n_fft=fft_size, n_mels=num_mels, fmin=fmin, fmax=fmax
|
55 |
+
)
|
56 |
+
self.torch_wav2spec_ = partial(
|
57 |
+
torch_wav2spec, mel_basis=mel_basis, fft_size=fft_size, hop_size=hop_size, win_length=win_size,
|
58 |
+
)
|
59 |
+
|
60 |
+
def build_model(self):
|
61 |
+
self.model_gen = WavVAE_V3(hparams=hparams)
|
62 |
+
|
63 |
+
self.model_disc = torch.nn.ModuleDict()
|
64 |
+
self.model_disc['mpd'] = MultiPeriodDiscriminator(hparams['mpd'], use_cond=hparams['use_cond_disc'])
|
65 |
+
self.model_disc['msd'] = MultiScaleDiscriminator(use_cond=hparams['use_cond_disc'])
|
66 |
+
if hparams['use_mrd']:
|
67 |
+
self.model_disc['mrd'] = MultiResolutionDiscriminator(hparams)
|
68 |
+
self.stft_loss = MultiResolutionSTFTLoss()
|
69 |
+
|
70 |
+
load_ckpt(self.model_gen.encoder, './checkpoints/1231_megatts3_wavvae_v2_25hz', 'model.module.encoder', strict=False)
|
71 |
+
load_ckpt(self.model_gen.decoder, './checkpoints/1117_melgan-nsf_full_1', 'model_gen', force=True, strict=True)
|
72 |
+
load_ckpt(self.model_disc, './checkpoints/1117_melgan-nsf_full_1', 'model_disc', force=True, strict=True)
|
73 |
+
return {'trainable': [self.model_gen, self.model_disc['mpd'], self.model_disc['msd'], self.model_disc['mrd']], 'others': []}
|
74 |
+
|
75 |
+
def load_model(self):
|
76 |
+
if hparams.get('load_ckpt', '') != '':
|
77 |
+
load_ckpt(self.model, hparams['load_ckpt'], 'model', strict=False)
|
78 |
+
|
79 |
+
def build_optimizer(self):
|
80 |
+
optimizer_gen = torch.optim.AdamW(self.model_gen.parameters(), lr=hparams['lr'],
|
81 |
+
betas=[hparams['adam_b1'], hparams['adam_b2']])
|
82 |
+
optimizer_disc = torch.optim.AdamW(self.model_disc.parameters(),
|
83 |
+
lr=hparams.get('disc_lr', hparams['lr']),
|
84 |
+
betas=[hparams['adam_b1'], hparams['adam_b2']])
|
85 |
+
return [optimizer_gen, optimizer_disc]
|
86 |
+
|
87 |
+
def build_scheduler(self, optimizer):
|
88 |
+
return None
|
89 |
+
|
90 |
+
def _training_step(self, sample, batch_idx, optimizer_idx):
|
91 |
+
log_outputs = {}
|
92 |
+
loss_weights = {}
|
93 |
+
sample['wavs'] = sample['wavs'].float()
|
94 |
+
# return None, {}
|
95 |
+
|
96 |
+
if self.global_step % 100 == 0:
|
97 |
+
devices = os.environ.get('CUDA_VISIBLE_DEVICES', '').split(",")
|
98 |
+
for d in devices:
|
99 |
+
os.system(f'pkill -f "voidgpu{d}"')
|
100 |
+
|
101 |
+
y = sample['wavs']
|
102 |
+
loss_output = {}
|
103 |
+
if optimizer_idx == 0:
|
104 |
+
#######################
|
105 |
+
# Generator #
|
106 |
+
#######################
|
107 |
+
y_, posterior = self.model_gen(y)
|
108 |
+
y = y.unsqueeze(1)
|
109 |
+
y_mel = mel_spectrogram(y.squeeze(1), hparams).transpose(1, 2)
|
110 |
+
y_hat_mel = mel_spectrogram(y_.squeeze(1), hparams).transpose(1, 2)
|
111 |
+
loss_output['mel'] = F.l1_loss(y_hat_mel, y_mel) * hparams['lambda_mel']
|
112 |
+
if self.training:
|
113 |
+
_, y_p_hat_g, fmap_f_r, fmap_f_g = self.model_disc['mpd'](y, y_, None)
|
114 |
+
_, y_s_hat_g, fmap_s_r, fmap_s_g = self.model_disc['msd'](y, y_, None)
|
115 |
+
loss_output['a_p'] = generator_loss(y_p_hat_g) * hparams['lambda_adv'] * hparams.get('lambda_mpd', 1.0)
|
116 |
+
loss_output['a_s'] = generator_loss(y_s_hat_g) * hparams['lambda_adv'] * hparams.get('lambda_msd', 1.0)
|
117 |
+
if hparams['use_mrd']:
|
118 |
+
y_r_hat_g = [x[1] for x in self.model_disc['mrd'](y_)]
|
119 |
+
loss_output['a_r'] = generator_loss(y_r_hat_g) \
|
120 |
+
* hparams['lambda_adv'] * hparams.get('lambda_mrd', 1.0)
|
121 |
+
if hparams['use_ms_stft']:
|
122 |
+
loss_output['sc'], loss_output['mag'] = self.stft_loss(y.squeeze(1), y_.squeeze(1))
|
123 |
+
loss_output['kl_loss'] = posterior.kl().mean() * hparams.get('lambda_kl', 1.0)
|
124 |
+
self.y_ = y_.detach()
|
125 |
+
else:
|
126 |
+
#######################
|
127 |
+
# Discriminator #
|
128 |
+
#######################
|
129 |
+
if not self.training:
|
130 |
+
return None
|
131 |
+
y = y.unsqueeze(1)
|
132 |
+
y_ = self.y_
|
133 |
+
# MPD
|
134 |
+
y_p_hat_r, y_p_hat_g, _, _ = self.model_disc['mpd'](y, y_.detach(), None)
|
135 |
+
loss_output['r_p'], loss_output['f_p'] = discriminator_loss(y_p_hat_r, y_p_hat_g)
|
136 |
+
# MSD
|
137 |
+
y_s_hat_r, y_s_hat_g, _, _ = self.model_disc['msd'](y, y_.detach(), None)
|
138 |
+
loss_output['r_s'], loss_output['f_s'] = discriminator_loss(y_s_hat_r, y_s_hat_g)
|
139 |
+
# MRD
|
140 |
+
if hparams['use_mrd']:
|
141 |
+
y_r_hat_r = [x[1] for x in self.model_disc['mrd'](y)]
|
142 |
+
y_r_hat_g = [x[1] for x in self.model_disc['mrd'](y_.detach())]
|
143 |
+
loss_output['r_r'], loss_output['f_r'] = discriminator_loss(y_r_hat_r, y_r_hat_g)
|
144 |
+
total_loss = sum(loss_output.values())
|
145 |
+
loss_output['bs'] = sample['wavs'].shape[0]
|
146 |
+
return total_loss, loss_output
|
147 |
+
|
148 |
+
def save_valid_result(self, sample, batch_idx, model_out):
|
149 |
+
sr = hparams['audio_sample_rate']
|
150 |
+
mel_out = model_out.get('mel_out')
|
151 |
+
f0 = sample.get('f0')
|
152 |
+
f0_gt = sample.get('f0')
|
153 |
+
if f0 is not None:
|
154 |
+
f0_gt = f0_gt.cpu()[-1]
|
155 |
+
if mel_out is not None:
|
156 |
+
f0_pred = self.predict_f0(sample['mels'])
|
157 |
+
self.plot_mel(batch_idx, sample['mels'], mel_out, f0s={'f0': f0_pred, 'f0g': f0_gt})
|
158 |
+
# gt wav
|
159 |
+
if self.global_step <= hparams['valid_infer_interval']:
|
160 |
+
mel_gt = sample['mels'][-1].cpu()
|
161 |
+
f0 = self.predict_f0(sample['mels'][-1:])
|
162 |
+
wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0)
|
163 |
+
self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, sr)
|
164 |
+
|
165 |
+
if self.global_step >= 0:
|
166 |
+
# with gt duration
|
167 |
+
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=True)
|
168 |
+
# dur_info = self.get_plot_dur_info(sample, model_out)
|
169 |
+
# del dur_info['dur_pred']
|
170 |
+
dur_info = None
|
171 |
+
|
172 |
+
f0 = self.predict_f0(model_out['mel_out'])
|
173 |
+
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][-1].cpu(), f0=f0)
|
174 |
+
self.logger.add_audio(f'wav_gdur_{batch_idx}', wav_pred, self.global_step, sr)
|
175 |
+
self.plot_mel(batch_idx, sample['mels'][-1:], model_out['mel_out'][-1], f'mel_gdur_{batch_idx}',
|
176 |
+
dur_info=dur_info, f0s={'f0': f0, 'f0g': f0_gt})
|
177 |
+
|
178 |
+
# with pred duration
|
179 |
+
if not hparams['use_gt_dur'] and not hparams['use_gt_latent']:
|
180 |
+
model_out = self.run_model(sample, infer=True, infer_use_gt_dur=False)
|
181 |
+
# dur_info = self.get_plot_dur_info(sample, model_out)
|
182 |
+
dur_info = None
|
183 |
+
f0 = self.predict_f0(model_out['mel_out'])
|
184 |
+
self.plot_mel(
|
185 |
+
batch_idx, sample['mels'], model_out['mel_out'][-1], f'mel_pdur_{batch_idx}',
|
186 |
+
dur_info=dur_info, f0s={'f0': f0, 'f0g': f0_gt})
|
187 |
+
wav_pred = self.vocoder.spec2wav(model_out['mel_out'][-1].cpu(), f0=f0)
|
188 |
+
self.logger.add_audio(f'wav_pdur_{batch_idx}', wav_pred, self.global_step, sr)
|
189 |
+
|
190 |
+
def get_plot_dur_info(self, sample, model_out):
|
191 |
+
T_txt = sample['txt_tokens'].shape[1]
|
192 |
+
dur_gt = mel2token_to_dur(sample['mel2ph'], T_txt)[-1]
|
193 |
+
dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt
|
194 |
+
txt = self.token_encoder.decode(sample['txt_tokens'][-1].cpu().numpy())
|
195 |
+
txt = txt.split(" ")
|
196 |
+
return {'dur_gt': dur_gt, 'dur_pred': dur_pred, 'txt': txt}
|
197 |
+
|
198 |
+
def on_before_optimization(self, opt_idx):
|
199 |
+
if opt_idx == 0:
|
200 |
+
nn.utils.clip_grad_norm_(self.model_gen.parameters(), hparams['generator_grad_norm'])
|
201 |
+
else:
|
202 |
+
nn.utils.clip_grad_norm_(self.model_disc.parameters(), hparams["discriminator_grad_norm"])
|
203 |
+
|
204 |
+
def to(self, device=None, dtype=None):
|
205 |
+
super().to(device=device, dtype=dtype)
|
206 |
+
# trainer doesn't move ema to device automatically, we do it mannually
|
207 |
+
if hparams.get('use_ema', False):
|
208 |
+
self.ema.to(device=device, dtype=dtype)
|
209 |
+
|
210 |
+
def cuda(self,device):
|
211 |
+
super().cuda(device)
|
212 |
+
if hparams.get('use_ema', False):
|
213 |
+
self.ema.to(device=device)
|
214 |
+
|
215 |
+
@torch.no_grad()
|
216 |
+
def validation_step(self, sample, batch_idx):
|
217 |
+
infer_steps = self.hparams.get('infer_steps', 12)
|
218 |
+
outputs = self._validation_step(sample, batch_idx, infer_steps)
|
219 |
+
return outputs
|
220 |
+
|
221 |
+
def _validation_step(self, sample, batch_idx, infer_steps):
|
222 |
+
outputs = {}
|
223 |
+
if self.trainer.proc_rank == 0:
|
224 |
+
# self.vae.eval()
|
225 |
+
# with torch.inference_mode():
|
226 |
+
# with torch.cuda.amp.autocast(dtype=torch.bfloat16, enabled=True):
|
227 |
+
# lat = self.vae.get_latent(sample["mels"])
|
228 |
+
# lat_lens = latent_lengths.clamp(max=lat.size(1))
|
229 |
+
# mel = self.vae.decode(lat)
|
230 |
+
pass
|
231 |
+
# outputs['losses'], _ = self.run_model(sample)
|
232 |
+
# _, model_out = self.run_model(sample, infer=True, infer_steps=infer_steps)
|
233 |
+
# outputs = tensors_to_scalars(outputs)
|
234 |
+
# output_ldm = model_out['ldm_out']
|
235 |
+
# T = output_ldm.shape[1]
|
236 |
+
# ldm = sample['kps'][:, :T] # [B, T, nkp, kp_dim] [0, 1]
|
237 |
+
# B, T, nkp, kp_dim = ldm.shape
|
238 |
+
# output_ldm = self.denormalize_ldm(output_ldm)
|
239 |
+
# recon_ldm = model_out['recon_ldm']
|
240 |
+
# recon_ldm = self.denormalize_ldm(recon_ldm)
|
241 |
+
|
242 |
+
# results_dir = f"{hparams['work_dir']}/results/{self.global_step}_infersteps{infer_steps}_cfg{hparams['cfg_w']}"
|
243 |
+
# os.makedirs(results_dir, exist_ok=True)
|
244 |
+
# n_ctx = model_out['ctx_mask'][0, :, 0].sum().long().item()
|
245 |
+
# writer_kp = imageio.get_writer(f"{results_dir}/{batch_idx:06d}_kp.sil.mp4", fps=25)
|
246 |
+
# writer_gt = imageio.get_writer(f"{results_dir}/{batch_idx:06d}_gt.sil.mp4", fps=25)
|
247 |
+
# writer_pred = imageio.get_writer(f"{results_dir}/{batch_idx:06d}_pred.sil.mp4", fps=25)
|
248 |
+
# for i in range(T):
|
249 |
+
# img = self.draw_ldm(recon_ldm[0, i])
|
250 |
+
# writer_gt.append_data(img)
|
251 |
+
# img = self.draw_ldm(ldm[0, i])
|
252 |
+
# writer_kp.append_data(img)
|
253 |
+
# if i < n_ctx:
|
254 |
+
# writer_pred.append_data(img)
|
255 |
+
# else:
|
256 |
+
# img = self.draw_ldm(
|
257 |
+
# output_ldm[0, i], color=(255, 255, 0),
|
258 |
+
# )
|
259 |
+
# writer_pred.append_data(img)
|
260 |
+
# writer_gt.close()
|
261 |
+
# writer_kp.close()
|
262 |
+
# writer_pred.close()
|
263 |
+
return outputs
|
264 |
+
|
265 |
+
@torch.no_grad()
|
266 |
+
def test_step(self, sample, batch_idx):
|
267 |
+
infer_steps = hparams['infer_steps']
|
268 |
+
return self._validation_step(sample, batch_idx, infer_steps)
|