Upload jsp_wavtokenizer_dit_stage2_vocoder_noreduce_center_mel100_node3.yaml
Browse files
jsp_wavtokenizer_dit_stage2_vocoder_noreduce_center_mel100_node3.yaml
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
seed_everything: 3407
|
2 |
+
|
3 |
+
data:
|
4 |
+
class_path: decoder.dataset.VocosDataModule
|
5 |
+
init_args:
|
6 |
+
train_params:
|
7 |
+
filelist_path: /cpfs01/shared/jishengpeng/Data/DataPath/libritts_train_dev_test
|
8 |
+
sampling_rate: 24000
|
9 |
+
num_samples: 144000
|
10 |
+
batch_size: 22 # 20
|
11 |
+
num_workers: 8
|
12 |
+
n_mels: 100
|
13 |
+
|
14 |
+
val_params:
|
15 |
+
filelist_path: /cpfs01/shared/jishengpeng/Data/DataPath/libritts_testclean
|
16 |
+
sampling_rate: 24000
|
17 |
+
num_samples: 144000
|
18 |
+
batch_size: 2 # 10
|
19 |
+
num_workers: 8
|
20 |
+
n_mels: 100
|
21 |
+
|
22 |
+
model:
|
23 |
+
class_path: decoder.experiment.WavTokenizer
|
24 |
+
init_args:
|
25 |
+
sample_rate: 24000
|
26 |
+
train_vocoder: true
|
27 |
+
reduce_length: false
|
28 |
+
initial_learning_rate: 2e-4
|
29 |
+
mel_loss_coeff: 360
|
30 |
+
mrd_loss_coeff: 1.0
|
31 |
+
num_warmup_steps: 0 # Optimizers warmup steps
|
32 |
+
pretrain_mel_steps: 0 # 0 means GAN objective from the first iteration
|
33 |
+
|
34 |
+
# automatic evaluation
|
35 |
+
evaluate_utmos: true
|
36 |
+
evaluate_pesq: true
|
37 |
+
evaluate_periodicty: true
|
38 |
+
|
39 |
+
resume: false
|
40 |
+
resume_config: ./WavTokenizer/configs/wavtokenizer_smalldata_frame75_3s_nq1_code16384_dim512_kmeans800_attn.yaml
|
41 |
+
resume_model: /home/xj_data/jishengpeng/Qwen_Codec/WavTokenizer_fm_dit/result/train/dit_stage2_trainvocoder_noreduce_center/lightning_logs/version_4/checkpoints/wavtokenizer_checkpoint_epoch=1_step=96596_val_loss=0.1223.ckpt
|
42 |
+
|
43 |
+
feature_extractor:
|
44 |
+
class_path: decoder.feature_extractors.EncodecFeatures
|
45 |
+
init_args:
|
46 |
+
encodec_model: encodec_24khz
|
47 |
+
bandwidths: [6.6, 6.6, 6.6, 6.6]
|
48 |
+
train_codebooks: true
|
49 |
+
num_quantizers: 1
|
50 |
+
dowmsamples: [8, 5, 4, 2]
|
51 |
+
vq_bins: 4096
|
52 |
+
vq_kmeans: 200
|
53 |
+
|
54 |
+
backbone:
|
55 |
+
class_path: decoder.models.WavTokenizerDiT
|
56 |
+
init_args:
|
57 |
+
train_vocoder: true
|
58 |
+
reduce_length: false
|
59 |
+
input_channels: 100
|
60 |
+
dim: 768
|
61 |
+
intermediate_dim: 1536
|
62 |
+
num_layers: 12
|
63 |
+
adanorm_num_embeddings: 4
|
64 |
+
|
65 |
+
head:
|
66 |
+
class_path: decoder.heads.ISTFTHead
|
67 |
+
init_args:
|
68 |
+
dim: 768
|
69 |
+
n_fft: 1280
|
70 |
+
hop_length: 320
|
71 |
+
padding: center
|
72 |
+
|
73 |
+
trainer:
|
74 |
+
logger:
|
75 |
+
class_path: pytorch_lightning.loggers.TensorBoardLogger
|
76 |
+
init_args:
|
77 |
+
save_dir: /home/xj_data/jishengpeng/Qwen_Codec/WavTokenizerDiT/result/train/dit_stage2_trainvocoder_noreduce_center_mel100_node3/
|
78 |
+
# save_dir: /home/xj_data/jishengpeng/Qwen_Codec/WavTokenizer_fm_gtmel/result/train/wavtokenizer_smalldata_flowing_matching_frame75_3s_nq1_code4096_dim512_kmeans200_attn/
|
79 |
+
callbacks:
|
80 |
+
- class_path: pytorch_lightning.callbacks.LearningRateMonitor
|
81 |
+
- class_path: pytorch_lightning.callbacks.ModelSummary
|
82 |
+
init_args:
|
83 |
+
max_depth: 2
|
84 |
+
- class_path: pytorch_lightning.callbacks.ModelCheckpoint
|
85 |
+
init_args:
|
86 |
+
monitor: val_loss
|
87 |
+
filename: wavtokenizer_checkpoint_{epoch}_{step}_{val_loss:.4f}
|
88 |
+
save_top_k: 6
|
89 |
+
save_last: true
|
90 |
+
- class_path: decoder.helpers.GradNormCallback
|
91 |
+
|
92 |
+
# Lightning calculates max_steps across all optimizer steps (rather than number of batches)
|
93 |
+
# This equals to 1M steps per generator and 1M per discriminator
|
94 |
+
max_steps: 1000000
|
95 |
+
# You might want to limit val batches when evaluating all the metrics, as they are time-consuming
|
96 |
+
limit_val_batches: 100
|
97 |
+
accelerator: gpu
|
98 |
+
strategy: ddp
|
99 |
+
# devices: [0]
|
100 |
+
devices: [0,1,2,3,4,5,6,7]
|
101 |
+
num_nodes: 3
|
102 |
+
log_every_n_steps: 1000
|