npnam693 commited on
Commit
7764f7b
·
1 Parent(s): 7329586

End of training

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - sroie
6
+ model-index:
7
+ - name: layoutlm-sroie
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # layoutlm-sroie
15
+
16
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the sroie dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0363
19
+ - Address: {'precision': 0.901685393258427, 'recall': 0.9250720461095101, 'f1': 0.9132290184921764, 'number': 347}
20
+ - Company: {'precision': 0.904891304347826, 'recall': 0.9596541786743515, 'f1': 0.9314685314685315, 'number': 347}
21
+ - Date: {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347}
22
+ - Total: {'precision': 0.8155080213903744, 'recall': 0.8789625360230547, 'f1': 0.8460471567267684, 'number': 347}
23
+ - Overall Precision: 0.9017
24
+ - Overall Recall: 0.9388
25
+ - Overall F1: 0.9199
26
+ - Overall Accuracy: 0.9930
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 3e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Address | Company | Date | Total | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 0.5189 | 1.0 | 40 | 0.1280 | {'precision': 0.7891891891891892, 'recall': 0.8414985590778098, 'f1': 0.8145048814504882, 'number': 347} | {'precision': 0.6987012987012987, 'recall': 0.7752161383285303, 'f1': 0.7349726775956286, 'number': 347} | {'precision': 0.6651982378854625, 'recall': 0.8703170028818443, 'f1': 0.7540574282147315, 'number': 347} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 347} | 0.7138 | 0.6218 | 0.6646 | 0.9650 |
58
+ | 0.0849 | 2.0 | 80 | 0.0558 | {'precision': 0.8753462603878116, 'recall': 0.9106628242074928, 'f1': 0.8926553672316384, 'number': 347} | {'precision': 0.8102189781021898, 'recall': 0.9596541786743515, 'f1': 0.8786279683377309, 'number': 347} | {'precision': 0.9178082191780822, 'recall': 0.9654178674351584, 'f1': 0.9410112359550562, 'number': 347} | {'precision': 0.5179282868525896, 'recall': 0.3746397694524496, 'f1': 0.43478260869565216, 'number': 347} | 0.8026 | 0.8026 | 0.8026 | 0.9851 |
59
+ | 0.0447 | 3.0 | 120 | 0.0435 | {'precision': 0.8997214484679665, 'recall': 0.930835734870317, 'f1': 0.9150141643059491, 'number': 347} | {'precision': 0.8954423592493298, 'recall': 0.962536023054755, 'f1': 0.9277777777777777, 'number': 347} | {'precision': 0.96045197740113, 'recall': 0.9798270893371758, 'f1': 0.9700427960057061, 'number': 347} | {'precision': 0.6222222222222222, 'recall': 0.6455331412103746, 'f1': 0.6336633663366337, 'number': 347} | 0.8444 | 0.8797 | 0.8617 | 0.9890 |
60
+ | 0.0318 | 4.0 | 160 | 0.0347 | {'precision': 0.8777777777777778, 'recall': 0.9106628242074928, 'f1': 0.8939179632248939, 'number': 347} | {'precision': 0.9153005464480874, 'recall': 0.9654178674351584, 'f1': 0.9396914446002805, 'number': 347} | {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} | {'precision': 0.671957671957672, 'recall': 0.7319884726224783, 'f1': 0.7006896551724137, 'number': 347} | 0.8608 | 0.8999 | 0.8799 | 0.9910 |
61
+ | 0.0245 | 5.0 | 200 | 0.0360 | {'precision': 0.8885793871866295, 'recall': 0.9193083573487032, 'f1': 0.9036827195467422, 'number': 347} | {'precision': 0.8909574468085106, 'recall': 0.9654178674351584, 'f1': 0.9266943291839556, 'number': 347} | {'precision': 0.9913294797687862, 'recall': 0.9884726224783862, 'f1': 0.98989898989899, 'number': 347} | {'precision': 0.7873754152823921, 'recall': 0.6829971181556196, 'f1': 0.7314814814814815, 'number': 347} | 0.8929 | 0.8890 | 0.8910 | 0.9910 |
62
+ | 0.0171 | 6.0 | 240 | 0.0325 | {'precision': 0.8932584269662921, 'recall': 0.9164265129682997, 'f1': 0.9046941678520626, 'number': 347} | {'precision': 0.912568306010929, 'recall': 0.962536023054755, 'f1': 0.9368863955119215, 'number': 347} | {'precision': 0.991304347826087, 'recall': 0.9855907780979827, 'f1': 0.9884393063583815, 'number': 347} | {'precision': 0.823170731707317, 'recall': 0.7780979827089337, 'f1': 0.8, 'number': 347} | 0.9061 | 0.9107 | 0.9084 | 0.9926 |
63
+ | 0.0133 | 7.0 | 280 | 0.0352 | {'precision': 0.8969359331476323, 'recall': 0.9279538904899135, 'f1': 0.9121813031161472, 'number': 347} | {'precision': 0.9103260869565217, 'recall': 0.9654178674351584, 'f1': 0.937062937062937, 'number': 347} | {'precision': 0.9885057471264368, 'recall': 0.9913544668587896, 'f1': 0.9899280575539569, 'number': 347} | {'precision': 0.7801608579088471, 'recall': 0.8386167146974063, 'f1': 0.8083333333333332, 'number': 347} | 0.8923 | 0.9308 | 0.9111 | 0.9922 |
64
+ | 0.013 | 8.0 | 320 | 0.0338 | {'precision': 0.889196675900277, 'recall': 0.9250720461095101, 'f1': 0.9067796610169492, 'number': 347} | {'precision': 0.9103260869565217, 'recall': 0.9654178674351584, 'f1': 0.937062937062937, 'number': 347} | {'precision': 0.9885057471264368, 'recall': 0.9913544668587896, 'f1': 0.9899280575539569, 'number': 347} | {'precision': 0.7887700534759359, 'recall': 0.8501440922190202, 'f1': 0.8183079056865465, 'number': 347} | 0.8925 | 0.9330 | 0.9123 | 0.9927 |
65
+ | 0.0105 | 9.0 | 360 | 0.0378 | {'precision': 0.8885793871866295, 'recall': 0.9193083573487032, 'f1': 0.9036827195467422, 'number': 347} | {'precision': 0.9081081081081082, 'recall': 0.968299711815562, 'f1': 0.9372384937238494, 'number': 347} | {'precision': 0.9913294797687862, 'recall': 0.9884726224783862, 'f1': 0.98989898989899, 'number': 347} | {'precision': 0.8096590909090909, 'recall': 0.8213256484149856, 'f1': 0.8154506437768241, 'number': 347} | 0.8991 | 0.9244 | 0.9115 | 0.9923 |
66
+ | 0.0094 | 10.0 | 400 | 0.0353 | {'precision': 0.901685393258427, 'recall': 0.9250720461095101, 'f1': 0.9132290184921764, 'number': 347} | {'precision': 0.904891304347826, 'recall': 0.9596541786743515, 'f1': 0.9314685314685315, 'number': 347} | {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} | {'precision': 0.8142076502732241, 'recall': 0.8587896253602305, 'f1': 0.8359046283309958, 'number': 347} | 0.9019 | 0.9337 | 0.9175 | 0.9929 |
67
+ | 0.0078 | 11.0 | 440 | 0.0373 | {'precision': 0.8938547486033519, 'recall': 0.9221902017291066, 'f1': 0.9078014184397163, 'number': 347} | {'precision': 0.9098360655737705, 'recall': 0.9596541786743515, 'f1': 0.9340813464235624, 'number': 347} | {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} | {'precision': 0.8150134048257373, 'recall': 0.8760806916426513, 'f1': 0.8444444444444444, 'number': 347} | 0.9010 | 0.9373 | 0.9188 | 0.9928 |
68
+ | 0.0074 | 12.0 | 480 | 0.0379 | {'precision': 0.8994413407821229, 'recall': 0.9279538904899135, 'f1': 0.9134751773049646, 'number': 347} | {'precision': 0.9128065395095368, 'recall': 0.9654178674351584, 'f1': 0.938375350140056, 'number': 347} | {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} | {'precision': 0.835195530726257, 'recall': 0.861671469740634, 'f1': 0.8482269503546098, 'number': 347} | 0.9091 | 0.9366 | 0.9226 | 0.9931 |
69
+ | 0.007 | 13.0 | 520 | 0.0357 | {'precision': 0.9019607843137255, 'recall': 0.9279538904899135, 'f1': 0.9147727272727272, 'number': 347} | {'precision': 0.9024390243902439, 'recall': 0.9596541786743515, 'f1': 0.9301675977653631, 'number': 347} | {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} | {'precision': 0.8328767123287671, 'recall': 0.8760806916426513, 'f1': 0.853932584269663, 'number': 347} | 0.9061 | 0.9388 | 0.9222 | 0.9932 |
70
+ | 0.0069 | 14.0 | 560 | 0.0361 | {'precision': 0.901685393258427, 'recall': 0.9250720461095101, 'f1': 0.9132290184921764, 'number': 347} | {'precision': 0.9051490514905149, 'recall': 0.962536023054755, 'f1': 0.9329608938547486, 'number': 347} | {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} | {'precision': 0.8046875, 'recall': 0.8904899135446686, 'f1': 0.8454172366621068, 'number': 347} | 0.8984 | 0.9424 | 0.9198 | 0.9930 |
71
+ | 0.0065 | 15.0 | 600 | 0.0363 | {'precision': 0.901685393258427, 'recall': 0.9250720461095101, 'f1': 0.9132290184921764, 'number': 347} | {'precision': 0.904891304347826, 'recall': 0.9596541786743515, 'f1': 0.9314685314685315, 'number': 347} | {'precision': 0.9913544668587896, 'recall': 0.9913544668587896, 'f1': 0.9913544668587896, 'number': 347} | {'precision': 0.8155080213903744, 'recall': 0.8789625360230547, 'f1': 0.8460471567267684, 'number': 347} | 0.9017 | 0.9388 | 0.9199 | 0.9930 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.28.0
77
+ - Pytorch 2.1.0+cu118
78
+ - Datasets 2.15.0
79
+ - Tokenizers 0.12.1
logs/events.out.tfevents.1700192196.7a4a5107f6a8.15988.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c79580dcbd45cad81bee1aafaee22e0ee439a0ed474583eb6eeb4bcbcad7a9f6
3
- size 14191
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:376953f1ffa90eda3ae3bae9543fb71d4c32112a67af87547d75c884299d5d73
3
+ size 14545
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
6
+ "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
+ "resample": 2,
9
+ "size": {
10
+ "height": 224,
11
+ "width": 224
12
+ },
13
+ "tesseract_config": ""
14
+ }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f1456a3867d60058c9028599f60abd26a19ddd327ebe9e21ae174c46150d026e
3
  size 450614978
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff51b7c417709f681127431bbe434d73320d82add8d2cebd4d17024cb075194d
3
  size 450614978
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": null,
3
+ "apply_ocr": false,
4
+ "clean_up_tokenization_spaces": true,
5
+ "cls_token": "[CLS]",
6
+ "cls_token_box": [
7
+ 0,
8
+ 0,
9
+ 0,
10
+ 0
11
+ ],
12
+ "do_basic_tokenize": true,
13
+ "do_lower_case": true,
14
+ "mask_token": "[MASK]",
15
+ "model_max_length": 512,
16
+ "never_split": null,
17
+ "only_label_first_subword": true,
18
+ "pad_token": "[PAD]",
19
+ "pad_token_box": [
20
+ 0,
21
+ 0,
22
+ 0,
23
+ 0
24
+ ],
25
+ "pad_token_label": -100,
26
+ "processor_class": "LayoutLMv2Processor",
27
+ "sep_token": "[SEP]",
28
+ "sep_token_box": [
29
+ 1000,
30
+ 1000,
31
+ 1000,
32
+ 1000
33
+ ],
34
+ "strip_accents": null,
35
+ "tokenize_chinese_chars": true,
36
+ "tokenizer_class": "LayoutLMv2Tokenizer",
37
+ "unk_token": "[UNK]"
38
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff