# phi-1_5-qlora-alpaca-instruction Model Card ## Model Description This model is a causal language model based on the `microsoft/phi-1_5` and has been finetuned using QLORA technology on the `vicgalle/alpaca-gpt4` dataset. ## Fine-tuning Details - **Base Model**: `microsoft/phi-1_5` - **Fine-tuning Dataset**: `vicgalle/alpaca-gpt4` - **Hardware**: NVIDIA 3090ti - **Training Duration**: 8 hours - **VRAM Consumption**: Approx. 20 GB for 14 hours - **Token Max Length**: 2048 - **Model Size**: 1.5billion + qlora weights merged ### Hyperparameters ```python # Lora Configuration config = LoraConfig( r=16, lora_alpha=16, target_modules=["Wqkv", "out_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) # Training Hyperparameters training_arguments = TrainingArguments( output_dir=f"{local_path}/output_dir", per_device_train_batch_size=4, gradient_accumulation_steps=6, learning_rate=2e-4, lr_scheduler_type="cosine", evaluation_strategy = "steps", eval_steps=500, save_strategy="epoch", logging_steps=100, num_train_epochs=6, report_to = 'wandb', run_name = run_name ) ``` ## Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "nps798/phi-1_5-qlora-alpaca-instruction" model = AutoModelForCausalLM.from_pretrained( model_name, device_map={"": 0}, trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True ) prompt= """Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: Choose three places you would like to visit and explain why. ### Response:""" inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False) outputs = model.generate(**inputs, max_length=500) text = tokenizer.batch_decode(outputs)[0] print(text) ``` ## License Because the base model is microsoft phi-1.5b model, this fine-tuned model is provided under the MICROSOFT RESEARCH LICENSE and is meant for non-commercial use only. ## Author I am a medical doctor interested in ML/NLP field. If you have any advice, suggestions, or opportunities, or simply want to discuss the fascinating intersection of medicine and technology, please don't hesitate to reach out.