# coding=utf-8 # Copyright 2023 Stability AI, EleutherAI, and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is based off the following work: # https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py # https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py """ PyTorch StableLM Epoch model. """ from typing import Optional, Tuple, Union import math import warnings import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from transformers.cache_utils import Cache from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging, is_flash_attn_greater_or_equal_2_10 from .configuration_stablelm_epoch import StableLMEpochConfig try: from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input except: flash_attn_func, flash_attn_varlen_func = None, None index_first_axis, pad_input, unpad_input = None, None, None logger = logging.get_logger(__name__) # Copied from transformers.models.llama.modeling_llama._get_unpad_data def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0, ): """Make causal mask used for bi-directional self-attention.""" batch_size, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length) # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`.""" batch_size, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill( inverted_mask.to(torch.bool), torch.finfo(dtype).min ) class RotaryEmbedding(nn.Module): def __init__( self, dim: int, max_position_embeddings: int, base: int = 10_000, device: Optional[torch.device] = None, ): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype(), ) def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32) # Don't do einsum, it converts fp32 to fp16 under AMP # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) def forward(self, x: torch.Tensor, seq_len: Optional[int] = None): # x: [batch_size, num_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.get_default_dtype()) return ( self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), ) def rotate_half(x: torch.Tensor): """Rotates half the hidden dims of the input.""" x1, x2 = torch.chunk(x, 2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids): # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] cos = cos[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim] sin = sin[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim] q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class MLP(nn.Module): def __init__(self, config: StableLMEpochConfig): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) self.act_fn = nn.SiLU() def forward(self, x: torch.Tensor) -> torch.Tensor: return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class Attention(nn.Module): def __init__(self, config: StableLMEpochConfig): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.is_causal = True self.attention_dropout = config.attention_dropout if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.o_proj.weight.data.fill_(0) # Zero initial, contribute nothing the the final result self._init_rope() def _init_rope(self): self.rotary_ndims = int(self.head_dim * self.config.rope_pct) self.rotary_emb = RotaryEmbedding( self.rotary_ndims, max_position_embeddings=self.config.max_position_embeddings, base=self.config.rope_theta, ) def forward( self, hidden_states: torch.FloatTensor, cross_states: torch.FloatTensor, attention_mask: torch.FloatTensor, position_ids: torch.LongTensor, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() _, kv_len, _ = cross_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(cross_states) value_states = self.v_proj(cross_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, kv_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, kv_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) query_rot = query_states[..., : self.rotary_ndims] query_pass = query_states[..., self.rotary_ndims :] key_rot = key_states[..., : self.rotary_ndims] key_pass = key_states[..., self.rotary_ndims :] kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) # [batch_size, num_heads, seq_len, head_dim] query_states = torch.cat((query_states, query_pass), dim=-1) key_states = torch.cat((key_states, key_pass), dim=-1) if past_key_value is not None: # Reuse k, v, self_attention key_states = torch.cat((past_key_value[0], key_states), dim=2) value_states = torch.cat((past_key_value[1], value_states), dim=2) past_key_value = (key_states, value_states) if use_cache else None # Repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # Upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) # Merge heads attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) # Final linear projection attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class FlashAttention2(Attention): """ Reference: https://github.com/huggingface/transformers/blob/5d36025ca13d05151b7a0c761e90d429c4644a30/src/transformers/models/llama/modeling_llama.py#L456 """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, cross_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # FlashAttention2 attention does not support output_attentions if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) # overwrite attention_mask with padding_mask attention_mask = kwargs.pop("padding_mask") output_attentions = False bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(cross_states) value_states = self.v_proj(cross_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) query_rot = query_states[..., : self.rotary_ndims] query_pass = query_states[..., self.rotary_ndims :] key_rot = key_states[..., : self.rotary_ndims] key_pass = key_states[..., self.rotary_ndims :] kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) # [batch_size, num_heads, seq_len, head_dim] query_states = torch.cat((query_states, query_pass), dim=-1) key_states = torch.cat((key_states, key_pass), dim=-1) if past_key_value is not None: # Reuse k, v, self_attention key_states = torch.cat((past_key_value[0], key_states), dim=2) value_states = torch.cat((past_key_value[1], value_states), dim=2) past_key_value = (key_states, value_states) if use_cache else None # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout if self.training else 0.0 attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`int`, *optional*): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in FlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal ) return attn_output def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis( key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) ATTENTION_CLASSES = { "eager": Attention, "flash_attention_2": FlashAttention2, } class DecoderLayer(nn.Module): def __init__(self, config: StableLMEpochConfig): super().__init__() self.self_attn = ATTENTION_CLASSES[config._attn_implementation](config=config) self.cross_attn = ATTENTION_CLASSES[config._attn_implementation](config=config) self.mlp = MLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps) def forward( self, hidden_states: Optional[torch.FloatTensor], cross_states: Optional[torch.FloatTensor], attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, cross_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # # Cross Attention # residual = hidden_states # bsz, q_len, _ = hidden_states.size() # _, kv_len, _ = cross_states.size() # cross_attn_mask = torch.zeros((bsz, 1, kv_len, q_len), device=hidden_states.device) # hidden_states, cross_attn_weights, _ = self.cross_attn( # hidden_states=hidden_states, # cross_states=cross_states, # attention_mask=cross_attn_mask, # position_ids=position_ids, # past_key_value=past_key_value, # output_attentions=output_attentions, # use_cache=use_cache, # ) # hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs class StableLMEpochPreTrainedModel(PreTrainedModel): """An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = StableLMEpochConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["DecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True def _init_weights(self, module: nn.Module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module: nn.Module, value=False): if isinstance(module, StableLMEpochModel): module.gradient_checkpointing = value class StableLMEpochModel(StableLMEpochPreTrainedModel): def __init__(self, config: StableLMEpochConfig): super().__init__(config) self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps) self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value: nn.Module): self.embed_tokens = value # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask( self, attention_mask: torch.Tensor, input_shape: torch.Size, inputs_embeds: torch.Tensor, past_key_values_length: int, ): # Create causal mask # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask( attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ).to(inputs_embeds.device) combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask return combined_attention_mask def forward( self, input_ids: Optional[torch.LongTensor] = None, cross_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" ) elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError( "You have to specify either decoder_input_ids or decoder_inputs_embeds" ) seq_length_with_past = seq_length past_key_values_length = 0 if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device, ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # Embed positions if self._use_flash_attention_2: # 2d mask is passed through the layers attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None else: if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device, ) attention_mask = self._prepare_decoder_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # Decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = ( past_key_values[idx] if past_key_values is not None else None ) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, position_ids, ) else: layer_outputs = decoder_layer( hidden_states, cross_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # Add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class StableLMEpochForCausalLM(StableLMEpochPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: StableLMEpochConfig): super().__init__(config) self.model = StableLMEpochModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings: nn.Module): self.lm_head = new_embeddings def get_decoder(self): return self.model def set_decoder(self, decoder): self.model = decoder def forward( self, input_ids: Optional[torch.LongTensor] = None, cross_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids, cross_states, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states).float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, **kwargs, ): # Trim decoder_input_ids if past is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # Create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) # If `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple( past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past ), ) return reordered_past StableLMEpochConfig.register_for_auto_class() StableLMEpochForCausalLM.register_for_auto_class("AutoModelForSeq2SeqLM")