--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: LoftQ/Meta-Llama-3-8B-Instruct-4bit-64rank model-index: - name: llama3-8b-instruct-qlora-mini results: [] --- # llama3-8b-instruct-qlora-mini This model is a fine-tuned version of [LoftQ/Meta-Llama-3-8B-Instruct-4bit-64rank](https://huggingface.co/LoftQ/Meta-Llama-3-8B-Instruct-4bit-64rank) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3909 | 1.0 | 53 | 1.5473 | | 2.1937 | 2.0 | 106 | 1.2690 | | 2.0915 | 3.0 | 159 | 1.0977 | | 1.9927 | 4.0 | 212 | 1.0320 | | 1.9058 | 5.0 | 265 | 1.0046 | | 1.8032 | 6.0 | 318 | 0.9885 | | 1.6688 | 7.0 | 371 | 0.9754 | | 1.5215 | 8.0 | 424 | 0.9745 | | 1.3617 | 9.0 | 477 | 0.9640 | | 1.2074 | 10.0 | 530 | 0.9579 | | 1.0429 | 11.0 | 583 | 0.9441 | | 0.9013 | 12.0 | 636 | 0.9355 | | 0.7969 | 13.0 | 689 | 0.9278 | | 0.7092 | 14.0 | 742 | 0.9171 | | 0.6272 | 15.0 | 795 | 0.9070 | | 0.5688 | 16.0 | 848 | 0.9052 | | 0.5128 | 17.0 | 901 | 0.8942 | | 0.469 | 18.0 | 954 | 0.8894 | | 0.4294 | 19.0 | 1007 | 0.8871 | | 0.3953 | 20.0 | 1060 | 0.8807 | | 0.371 | 21.0 | 1113 | 0.8756 | | 0.3533 | 22.0 | 1166 | 0.8750 | | 0.3335 | 23.0 | 1219 | 0.8730 | | 0.3212 | 24.0 | 1272 | 0.8699 | | 0.3108 | 25.0 | 1325 | 0.8687 | | 0.3089 | 26.0 | 1378 | 0.8676 | | 0.3031 | 27.0 | 1431 | 0.8678 | | 0.3014 | 28.0 | 1484 | 0.8675 | | 0.3013 | 29.0 | 1537 | 0.8666 | | 0.2978 | 30.0 | 1590 | 0.8668 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1