--- base_model: nroggendorff/epicrealism library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training inference: true --- # Text-to-image finetuning - nroggendorff/wikiart-diffusion This pipeline was finetuned from **nroggendorff/epicrealism** on the **nroggendorff/wikiart** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['image']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("nroggendorff/wikiart-diffusion", torch_dtype=torch.float16) prompt = "image" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 2 * Learning rate: 0.0001 * Batch size: 16 * Gradient accumulation steps: 1 * Image resolution: 512 * Mixed-precision: fp16 ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]