File size: 3,240 Bytes
ce454ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
---
library_name: transformers
language:
- vi
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- capleaf/viVoice
metrics:
- wer
model-index:
- name: Whisper Small Vi - finetune viVoice - 70000
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: viVoice
type: capleaf/viVoice
config: default
split: test
args: 'split: train'
metrics:
- name: Wer
type: wer
value: 14.076664076664077
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Vi - finetune viVoice - 70000
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the viVoice dataset.
It achieves the following results on the evaluation set:
- Loss: 5.7260
- Wer: 14.0767
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.25e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 80000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.1892 | 0.05 | 4000 | 3.5308 | 18.7775 |
| 0.1551 | 0.1 | 8000 | 4.2465 | 18.1171 |
| 0.1444 | 0.15 | 12000 | 4.4830 | 16.9775 |
| 0.1097 | 1.0266 | 16000 | 4.4955 | 16.1357 |
| 0.0966 | 1.0766 | 20000 | 4.8873 | 15.6825 |
| 0.0915 | 1.1266 | 24000 | 4.8408 | 15.6177 |
| 0.0853 | 2.0032 | 28000 | 5.0293 | 15.1904 |
| 0.065 | 2.0532 | 32000 | 5.0290 | 15.8120 |
| 0.0644 | 2.1032 | 36000 | 5.1940 | 14.5299 |
| 0.0584 | 2.1532 | 40000 | 5.3418 | 15.1515 |
| 0.0466 | 3.0298 | 44000 | 5.2564 | 15.2422 |
| 0.0405 | 3.0798 | 48000 | 5.4065 | 14.7112 |
| 0.0412 | 3.1298 | 52000 | 5.5395 | 14.1414 |
| 0.0344 | 4.0064 | 56000 | 5.6079 | 14.5947 |
| 0.0288 | 4.0564 | 60000 | 5.5141 | 14.4911 |
| 0.0257 | 4.1064 | 64000 | 5.6983 | 14.7242 |
| 0.0249 | 4.1564 | 68000 | 5.7079 | 14.0378 |
| 0.0209 | 5.033 | 72000 | 5.5744 | 13.8177 |
| 0.0192 | 5.083 | 76000 | 5.7272 | 14.1803 |
| 0.0185 | 5.133 | 80000 | 5.7260 | 14.0767 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|