--- library_name: transformers language: - vi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - capleaf/viVoice metrics: - wer model-index: - name: Whisper Small Vi - finetune viVoice - 70000 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: viVoice type: capleaf/viVoice config: default split: test args: 'split: train' metrics: - name: Wer type: wer value: 14.076664076664077 --- # Whisper Small Vi - finetune viVoice - 70000 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the viVoice dataset. It achieves the following results on the evaluation set: - Loss: 5.7260 - Wer: 14.0767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.25e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 80000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.1892 | 0.05 | 4000 | 3.5308 | 18.7775 | | 0.1551 | 0.1 | 8000 | 4.2465 | 18.1171 | | 0.1444 | 0.15 | 12000 | 4.4830 | 16.9775 | | 0.1097 | 1.0266 | 16000 | 4.4955 | 16.1357 | | 0.0966 | 1.0766 | 20000 | 4.8873 | 15.6825 | | 0.0915 | 1.1266 | 24000 | 4.8408 | 15.6177 | | 0.0853 | 2.0032 | 28000 | 5.0293 | 15.1904 | | 0.065 | 2.0532 | 32000 | 5.0290 | 15.8120 | | 0.0644 | 2.1032 | 36000 | 5.1940 | 14.5299 | | 0.0584 | 2.1532 | 40000 | 5.3418 | 15.1515 | | 0.0466 | 3.0298 | 44000 | 5.2564 | 15.2422 | | 0.0405 | 3.0798 | 48000 | 5.4065 | 14.7112 | | 0.0412 | 3.1298 | 52000 | 5.5395 | 14.1414 | | 0.0344 | 4.0064 | 56000 | 5.6079 | 14.5947 | | 0.0288 | 4.0564 | 60000 | 5.5141 | 14.4911 | | 0.0257 | 4.1064 | 64000 | 5.6983 | 14.7242 | | 0.0249 | 4.1564 | 68000 | 5.7079 | 14.0378 | | 0.0209 | 5.033 | 72000 | 5.5744 | 13.8177 | | 0.0192 | 5.083 | 76000 | 5.7272 | 14.1803 | | 0.0185 | 5.133 | 80000 | 5.7260 | 14.0767 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0