Alexandre-Numind
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,94 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
4 |
---
|
|
|
5 |
|
6 |
-
|
|
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
## Model Details
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
|
32 |
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
41 |
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
|
50 |
-
|
|
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
|
62 |
-
[More Information Needed]
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
---
|
6 |
+
# Structure Extraction Model by NuMind 🔥
|
7 |
|
8 |
+
NuExtract-large is a fine-tuned version of phi-3-small, on a private high-quality syntatic dataset for information extraction.
|
9 |
+
To use the model, provide an input text (less than 2000 tokens) and a JSON schema describing the information you need to extract.
|
10 |
|
11 |
+
Note: This model is purely extractive, so each information output by the model is present as it is in the text. You can also provide an example of output to help the model understand your task more precisely.
|
12 |
|
13 |
+
try the base model here: https://huggingface.co/spaces/numind/NuExtract
|
14 |
|
15 |
+
**Checkout other models by NuMind:**
|
16 |
+
* SOTA Zero-shot NER Model [NuNER Zero](https://huggingface.co/numind/NuNER_Zero)
|
17 |
+
* SOTA Multilingual Entity Recognition Foundation Model: [link](https://huggingface.co/numind/entity-recognition-multilingual-general-sota-v1)
|
18 |
+
* SOTA Sentiment Analysis Foundation Model: [English](https://huggingface.co/numind/generic-sentiment-v1), [Multilingual](https://huggingface.co/numind/generic-sentiment-multi-v1)
|
19 |
|
|
|
20 |
|
21 |
+
## Benchmark
|
22 |
|
23 |
+
Benchmark 0 shot (will release soon):
|
24 |
|
25 |
+
<p align="left">
|
26 |
+
<img src="result.png" width="600">
|
27 |
+
</p>
|
28 |
|
29 |
+
Benchmark fine-tunning:
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
<p align="left">
|
32 |
+
<img src="result_ft.png" width="600">
|
33 |
+
</p>
|
34 |
|
|
|
35 |
|
36 |
+
## Usage
|
|
|
|
|
37 |
|
38 |
+
To use the model:
|
39 |
|
40 |
+
```python
|
41 |
|
42 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
43 |
|
|
|
44 |
|
45 |
+
def predict_NuExtract(model,tokenizer,text, schema,example = ["","",""]):
|
46 |
+
schema = json.dumps(json.loads(schema), indent=4)
|
47 |
+
input_llm = "<|input|>\n### Template:\n" + schema + "\n"
|
48 |
+
for i in example:
|
49 |
+
if i != "":
|
50 |
+
input_llm += "### Example:\n"+ json.dumps(json.loads(i), indent=4)+"\n"
|
51 |
+
|
52 |
+
input_llm += "### Text:\n"+text +"\n<|output|>\n"
|
53 |
+
input_ids = tokenizer(input_llm, return_tensors="pt",truncation = True, max_length = 4000).to("cuda")
|
54 |
|
55 |
+
output = tokenizer.decode(model.generate(**input_ids)[0], skip_special_tokens=True)
|
56 |
+
return output.split("<|output|>")[1].split("<|end-output|>")[0]
|
57 |
|
|
|
58 |
|
59 |
+
model = AutoModelForCausalLM.from_pretrained("numind/NuExtract", trust_remote_code=True)
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained("numind/NuExtract", trust_remote_code=True)
|
61 |
|
62 |
+
#model.to("cuda")
|
63 |
|
64 |
+
model.eval()
|
65 |
|
66 |
+
text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for
|
67 |
+
superior performance and efficiency. Mistral 7B outperforms the best open 13B
|
68 |
+
model (Llama 2) across all evaluated benchmarks, and the best released 34B
|
69 |
+
model (Llama 1) in reasoning, mathematics, and code generation. Our model
|
70 |
+
leverages grouped-query attention (GQA) for faster inference, coupled with sliding
|
71 |
+
window attention (SWA) to effectively handle sequences of arbitrary length with a
|
72 |
+
reduced inference cost. We also provide a model fine-tuned to follow instructions,
|
73 |
+
Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and
|
74 |
+
automated benchmarks. Our models are released under the Apache 2.0 license.
|
75 |
+
Code: https://github.com/mistralai/mistral-src
|
76 |
+
Webpage: https://mistral.ai/news/announcing-mistral-7b/"""
|
77 |
|
78 |
+
schema = """{
|
79 |
+
"Model": {
|
80 |
+
"Name": "",
|
81 |
+
"Number of parameters": "",
|
82 |
+
"Number of token": "",
|
83 |
+
"Architecture": []
|
84 |
+
},
|
85 |
+
"Usage": {
|
86 |
+
"Use case": [],
|
87 |
+
"Licence": ""
|
88 |
+
}
|
89 |
+
}"""
|
90 |
|
91 |
+
prediction = predict_NuExtract(model,tokenizer,text, schema,example = ["","",""])
|
92 |
|
|
|
93 |
|
94 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|