File size: 2,212 Bytes
252443a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: finetuned-indian-food
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-indian-food
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2206
- Accuracy: 0.9458
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 1.1092 | 0.3003 | 100 | 1.0007 | 0.8225 |
| 0.7677 | 0.6006 | 200 | 0.6427 | 0.8533 |
| 0.7808 | 0.9009 | 300 | 0.5790 | 0.8533 |
| 0.3628 | 1.2012 | 400 | 0.5051 | 0.8629 |
| 0.2928 | 1.5015 | 500 | 0.3815 | 0.9086 |
| 0.3293 | 1.8018 | 600 | 0.3522 | 0.9065 |
| 0.2239 | 2.1021 | 700 | 0.3320 | 0.9086 |
| 0.288 | 2.4024 | 800 | 0.3520 | 0.9065 |
| 0.3209 | 2.7027 | 900 | 0.2842 | 0.9299 |
| 0.187 | 3.0030 | 1000 | 0.2577 | 0.9352 |
| 0.1801 | 3.3033 | 1100 | 0.2511 | 0.9341 |
| 0.2028 | 3.6036 | 1200 | 0.2210 | 0.9469 |
| 0.1564 | 3.9039 | 1300 | 0.2206 | 0.9458 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|