--- library_name: transformers license: apache-2.0 base_model: Dr-BERT/DrBERT-7GB tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: DrBERT-7GB-finetuned-loinc results: [] --- # DrBERT-7GB-finetuned-loinc This model is a fine-tuned version of [Dr-BERT/DrBERT-7GB](https://huggingface.co/Dr-BERT/DrBERT-7GB) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6762 - Accuracy: 0.8519 - F1: 0.8516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 1268 | 0.6636 | 0.8410 | 0.8379 | | No log | 2.0 | 2536 | 0.6715 | 0.8401 | 0.8414 | | No log | 3.0 | 3804 | 0.6953 | 0.8538 | 0.8490 | | No log | 4.0 | 5072 | 0.6719 | 0.8522 | 0.8524 | | No log | 5.0 | 6340 | 0.6762 | 0.8519 | 0.8516 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1+cxx11.abi - Datasets 3.0.1 - Tokenizers 0.20.0