Feature Extraction
Transformers
Safetensors
custom_code
File size: 1,156 Bytes
2f947ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from argparse import Namespace
from typing import NamedTuple

import torch
from torch import nn
import torch.nn.functional as F


class AdaptorInput(NamedTuple):
    images: torch.Tensor
    summary: torch.Tensor
    features: torch.Tensor


class RadioOutput(NamedTuple):
    summary: torch.Tensor
    features: torch.Tensor

    def to(self, *args, **kwargs):
        return RadioOutput(
            self.summary.to(*args, **kwargs) if self.summary is not None else None,
            self.features.to(*args, **kwargs) if self.features is not None else None,
        )


class AdaptorBase(nn.Module):
    def forward(self, input: AdaptorInput) -> RadioOutput:
        raise NotImplementedError("Subclasses must implement this!")