|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import timm |
|
import torch |
|
import torch.nn as nn |
|
from timm.models.registry import register_model |
|
|
|
from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from .block import C2f |
|
TRT = False |
|
|
|
import pickle |
|
global bias_indx |
|
bias_indx = -1 |
|
DEBUG = False |
|
|
|
|
|
|
|
def pixel_unshuffle(data, factor=2): |
|
|
|
B, C, H, W = data.shape |
|
return data.view(B, C, factor, H//factor, factor, W//factor).permute(0,1,2,4,3,5).reshape(B, -1, H//factor, W//factor) |
|
|
|
class SwiGLU(nn.Module): |
|
|
|
def forward(self, x): |
|
x, gate = x.chunk(2, dim=-1) |
|
return F.silu(gate) * x |
|
|
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Args: |
|
x: (B, C, H, W) |
|
window_size: window size |
|
Returns: |
|
windows - local window features (num_windows*B, window_size*window_size, C) |
|
(Hp, Wp) - the size of the padded image |
|
""" |
|
B, C, H, W = x.shape |
|
|
|
if window_size == 0 or (window_size==H and window_size==W): |
|
windows = x.flatten(2).transpose(1, 2) |
|
Hp, Wp = H, W |
|
else: |
|
pad_h = (window_size - H % window_size) % window_size |
|
pad_w = (window_size - W % window_size) % window_size |
|
if pad_h > 0 or pad_w > 0: |
|
x = F.pad(x, (0, pad_w, 0, pad_h, 0, 0, 0, 0)) |
|
Hp, Wp = H + pad_h, W + pad_w |
|
|
|
x = x.view(B, C, Hp // window_size, window_size, Wp // window_size, window_size) |
|
windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C) |
|
|
|
return windows, (Hp, Wp) |
|
|
|
class Conv2d_BN(nn.Module): |
|
''' |
|
Conv2d + BN layer with folding capability to speed up inference |
|
''' |
|
def __init__(self, a, b, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1, bias=False): |
|
super().__init__() |
|
self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, padding, dilation, groups, bias=False) |
|
if 1: |
|
self.bn = torch.nn.BatchNorm2d(b) |
|
torch.nn.init.constant_(self.bn.weight, bn_weight_init) |
|
torch.nn.init.constant_(self.bn.bias, 0) |
|
|
|
def forward(self,x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
return x |
|
|
|
@torch.no_grad() |
|
def switch_to_deploy(self): |
|
|
|
|
|
if not isinstance(self.bn, nn.Identity): |
|
c, bn = self.conv, self.bn |
|
w = bn.weight / (bn.running_var + bn.eps) ** 0.5 |
|
w = c.weight * w[:, None, None, None] |
|
b = bn.bias - bn.running_mean * bn.weight / \ |
|
(bn.running_var + bn.eps)**0.5 |
|
self.conv.weight.data.copy_(w) |
|
self.conv.bias = nn.Parameter(b) |
|
self.bn = nn.Identity() |
|
|
|
|
|
|
|
def window_reverse(windows, window_size, H, W, pad_hw): |
|
""" |
|
Args: |
|
windows: local window features (num_windows*B, window_size, window_size, C) |
|
window_size: Window size |
|
H: Height of image |
|
W: Width of image |
|
pad_w - a tuple of image passing used in windowing step |
|
Returns: |
|
x: (B, C, H, W) |
|
|
|
""" |
|
|
|
Hp, Wp = pad_hw |
|
if window_size == 0 or (window_size==H and window_size==W): |
|
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size)) |
|
x = windows.transpose(1, 2).view(B, -1, H, W) |
|
else: |
|
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size)) |
|
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) |
|
x = x.permute(0, 5, 1, 3, 2, 4).reshape(B,windows.shape[2], Hp, Wp) |
|
|
|
if Hp > H or Wp > W: |
|
x = x[:, :, :H, :W, ].contiguous() |
|
|
|
return x |
|
|
|
|
|
|
|
class PosEmbMLPSwinv2D(nn.Module): |
|
def __init__(self, window_size, pretrained_window_size, num_heads, seq_length, no_log=False): |
|
super().__init__() |
|
self.window_size = window_size |
|
self.num_heads = num_heads |
|
|
|
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(512, num_heads, bias=False)) |
|
|
|
|
|
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32) |
|
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32) |
|
relative_coords_table = torch.stack( |
|
torch.meshgrid([relative_coords_h, |
|
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) |
|
if pretrained_window_size[0] > 0: |
|
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1) |
|
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1) |
|
else: |
|
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1) |
|
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1) |
|
|
|
if not no_log: |
|
relative_coords_table *= 8 |
|
relative_coords_table = torch.sign(relative_coords_table) * torch.log2( |
|
torch.abs(relative_coords_table) + 1.0) / np.log2(8) |
|
|
|
self.register_buffer("relative_coords_table", relative_coords_table) |
|
|
|
|
|
coords_h = torch.arange(self.window_size[0]) |
|
coords_w = torch.arange(self.window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += self.window_size[0] - 1 |
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
relative_position_index = relative_coords.sum(-1) |
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
self.grid_exists = False |
|
|
|
self.deploy = False |
|
|
|
relative_bias = torch.zeros(1, num_heads, seq_length, seq_length) |
|
self.seq_length = seq_length |
|
self.register_buffer("relative_bias", relative_bias) |
|
|
|
def switch_to_deploy(self): |
|
self.deploy = True |
|
self.grid_exists = True |
|
|
|
def forward(self, input_tensor): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.training: self.grid_exists = False |
|
|
|
if self.deploy and self.grid_exists: |
|
input_tensor += self.relative_bias |
|
return input_tensor |
|
|
|
if not self.grid_exists: |
|
self.grid_exists = True |
|
|
|
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) |
|
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], |
|
-1) |
|
|
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
relative_position_bias = 16 * torch.sigmoid(relative_position_bias) |
|
|
|
self.relative_bias = relative_position_bias.unsqueeze(0) |
|
|
|
input_tensor += self.relative_bias |
|
return input_tensor |
|
|
|
|
|
|
|
class GRAAttentionBlock(nn.Module): |
|
def __init__(self, window_size, dim_in, dim_out, |
|
num_heads, drop_path=0., qk_scale=None, qkv_bias=False, |
|
norm_layer=nn.LayerNorm, layer_scale=None, |
|
use_swiglu=True, |
|
subsample_ratio=1, dim_ratio=1, conv_base=False, |
|
do_windowing=True, multi_query=False) -> None: |
|
super().__init__() |
|
|
|
dim = dim_in |
|
|
|
SHUFFLE = True |
|
SHUFFLE = False |
|
self.do_windowing = do_windowing |
|
|
|
if do_windowing: |
|
if SHUFFLE: |
|
self.downsample_op = torch.nn.PixelUnshuffle(subsample_ratio) if subsample_ratio>1 else torch.nn.Identity() |
|
self.downsample_mixer = nn.Conv2d(dim_in * (subsample_ratio * subsample_ratio), dim_in * (dim_ratio), kernel_size=1, stride=1, padding=0, bias=False) if dim*dim_ratio != dim * subsample_ratio * subsample_ratio else torch.nn.Identity() |
|
else: |
|
if conv_base: |
|
self.downsample_op = nn.Conv2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity() |
|
self.downsample_mixer = nn.Identity() |
|
else: |
|
self.downsample_op = nn.AvgPool2d(kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity() |
|
self.downsample_mixer = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1) if subsample_ratio > 1 else nn.Identity() |
|
|
|
|
|
if do_windowing: |
|
if SHUFFLE: |
|
self.upsample_mixer =nn.Conv2d(dim_in * dim_ratio, dim_in * (subsample_ratio * subsample_ratio), kernel_size=1, stride=1, padding=0, bias=False) if dim*dim_ratio != dim * subsample_ratio * subsample_ratio else torch.nn.Identity() |
|
self.upsample_op = torch.nn.PixelShuffle(subsample_ratio) if subsample_ratio>1 else torch.nn.Identity() |
|
else: |
|
if conv_base: |
|
self.upsample_mixer = nn.Identity() |
|
self.upsample_op = nn.ConvTranspose2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity() |
|
else: |
|
self.upsample_mixer = nn.Upsample(scale_factor=subsample_ratio, mode='nearest') if subsample_ratio > 1 else nn.Identity() |
|
self.upsample_op = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1, padding=0, bias=False) if subsample_ratio > 1 else nn.Identity() |
|
|
|
self.window_size = window_size |
|
|
|
self.norm1 = norm_layer(dim_in) |
|
if DEBUG: |
|
print(f"GRAAttentionBlock: input_resolution: , window_size: {window_size}, dim_in: {dim_in}, dim_out: {dim_out}, num_heads: {num_heads}, drop_path: {drop_path}, qk_scale: {qk_scale}, qkv_bias: {qkv_bias}, layer_scale: {layer_scale}") |
|
|
|
|
|
self.attn = WindowAttention( |
|
dim_in, |
|
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
resolution=window_size, |
|
seq_length=window_size**2, dim_out=dim_in, multi_query=multi_query) |
|
if DEBUG: |
|
print(f"Attention: dim_in: {dim_in}, num_heads: {num_heads}, qkv_bias: {qkv_bias}, qk_scale: {qk_scale}, resolution: {window_size}, seq_length: {window_size**2}, dim_out: {dim_in}") |
|
print(f"drop_path: {drop_path}, layer_scale: {layer_scale}") |
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float] |
|
self.gamma1 = nn.Parameter(layer_scale * torch.ones(dim_in)) if use_layer_scale else 1 |
|
|
|
|
|
mlp_ratio = 4 |
|
self.norm2 = norm_layer(dim_in) |
|
mlp_hidden_dim = int(dim_in * mlp_ratio) |
|
|
|
activation = nn.GELU if not use_swiglu else SwiGLU |
|
mlp_hidden_dim = int((4 * dim_in * 1 / 2) / 64) * 64 if use_swiglu else mlp_hidden_dim |
|
|
|
self.mlp = Mlp(in_features=dim_in, hidden_features=mlp_hidden_dim, act_layer=activation, use_swiglu=use_swiglu) |
|
|
|
self.gamma2 = nn.Parameter(layer_scale * torch.ones(dim_in)) if layer_scale else 1 |
|
self.drop_path2=DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
if DEBUG: |
|
print(f"MLP layer: dim_in: {dim_in}, dim_out: {dim_in}, mlp_hidden_dim: {mlp_hidden_dim}") |
|
print(f"drop_path: {drop_path}, layer_scale: {layer_scale}") |
|
|
|
|
|
def forward(self, x): |
|
skip_connection = x |
|
|
|
if self.do_windowing: |
|
|
|
x = self.downsample_op(x) |
|
x = self.downsample_mixer(x) |
|
|
|
if self.window_size>0: |
|
H, W = x.shape[2], x.shape[3] |
|
|
|
x, pad_hw = window_partition(x, self.window_size) |
|
|
|
|
|
x = x + self.drop_path1(self.gamma1*self.attn(self.norm1(x))) |
|
|
|
x = x + self.drop_path2(self.gamma2*self.mlp(self.norm2(x))) |
|
|
|
if self.do_windowing: |
|
if self.window_size > 0: |
|
x = window_reverse(x, self.window_size, H, W, pad_hw) |
|
|
|
x = self.upsample_mixer(x) |
|
x = self.upsample_op(x) |
|
|
|
|
|
if x.shape[2] != skip_connection.shape[2] or x.shape[3] != skip_connection.shape[3]: |
|
x = torch.nn.functional.pad(x, ( 0, -x.shape[3] + skip_connection.shape[3], 0, -x.shape[2] + skip_connection.shape[2])) |
|
|
|
|
|
|
|
x = 0.5 * x + 0.5 * skip_connection |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
class MultiResolutionAttention(nn.Module): |
|
""" |
|
MultiResolutionAttention (MRA) module |
|
The idea is to use multiple attention blocks with different resolution |
|
Feature maps are downsampled / upsampled for each attention block on different blocks |
|
Every attention block supports |
|
|
|
""" |
|
|
|
def __init__(self, window_size, sr_ratio, |
|
dim, dim_ratio, num_heads, |
|
do_windowing=True, |
|
layer_scale=1e-5, norm_layer=nn.LayerNorm, |
|
drop_path = 0, qkv_bias=False, qk_scale=1.0, |
|
use_swiglu=True, multi_query=False, conv_base=False) -> None: |
|
""" |
|
Args: |
|
input_resolution: input image resolution |
|
window_size: window size |
|
compression_ratio: compression ratio |
|
max_depth: maximum depth of the GRA module |
|
""" |
|
super().__init__() |
|
|
|
depth = len(sr_ratio) |
|
|
|
|
|
self.attention_blocks = nn.ModuleList() |
|
|
|
|
|
for i in range(depth): |
|
subsample_ratio = sr_ratio[i] |
|
if len(window_size) > i: |
|
window_size_local = window_size[i] |
|
else: |
|
window_size_local = window_size[0] |
|
|
|
self.attention_blocks.append(GRAAttentionBlock(window_size=window_size_local, |
|
dim_in=dim, dim_out=dim, num_heads=num_heads, |
|
qkv_bias=qkv_bias, qk_scale=qk_scale, norm_layer=norm_layer, |
|
layer_scale=layer_scale, drop_path=drop_path, |
|
use_swiglu=use_swiglu, subsample_ratio=subsample_ratio, dim_ratio=dim_ratio, |
|
do_windowing=do_windowing, multi_query=multi_query, conv_base=conv_base), |
|
) |
|
|
|
|
|
|
|
def forward(self, x): |
|
|
|
for attention_block in self.attention_blocks: |
|
x = attention_block(x) |
|
|
|
return x |
|
|
|
|
|
|
|
class Mlp(nn.Module): |
|
""" |
|
Multi-Layer Perceptron (MLP) block |
|
""" |
|
|
|
def __init__(self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
use_swiglu=True, |
|
drop=0.): |
|
""" |
|
Args: |
|
in_features: input features dimension. |
|
hidden_features: hidden features dimension. |
|
out_features: output features dimension. |
|
act_layer: activation function. |
|
drop: dropout rate. |
|
""" |
|
|
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features * (2 if use_swiglu else 1), bias=False) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features, bias=False) |
|
|
|
|
|
def forward(self, x): |
|
x_size = x.size() |
|
x = x.view(-1, x_size[-1]) |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
|
|
x = self.fc2(x) |
|
|
|
x = x.view(x_size) |
|
return x |
|
|
|
class Downsample(nn.Module): |
|
""" |
|
Down-sampling block |
|
|
|
Pixel Unshuffle is used for down-sampling, works great accuracy - wise but takes 10% more TRT time |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
shuffle = False, |
|
): |
|
""" |
|
Args: |
|
dim: feature size dimension. |
|
shuffle: idea with |
|
keep_dim: bool argument for maintaining the resolution. |
|
""" |
|
|
|
super().__init__() |
|
dim_out = 2 * dim |
|
|
|
if shuffle: |
|
self.norm = lambda x: pixel_unshuffle(x, factor=2) |
|
self.reduction = Conv2d_BN(dim*4, dim_out, 1, 1, 0, bias=False) |
|
else: |
|
|
|
|
|
self.norm = nn.Identity() |
|
self.reduction = Conv2d_BN(dim, dim_out, 3, 2, 1, bias=False) |
|
|
|
|
|
def forward(self, x): |
|
x = self.norm(x) |
|
x = self.reduction(x) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" |
|
Patch embedding block |
|
""" |
|
|
|
def __init__(self, in_chans=3, in_dim=64, dim=96, shuffle_down=False): |
|
""" |
|
Args: |
|
in_chans: number of input channels. |
|
in_dim: intermediate feature size dimension to speed up stem. |
|
dim: final stem channel number |
|
shuffle_down: use PixelUnshuffle for down-sampling, effectively increases the receptive field |
|
""" |
|
|
|
super().__init__() |
|
|
|
if not shuffle_down: |
|
self.proj = nn.Identity() |
|
self.conv_down = nn.Sequential( |
|
Conv2d_BN(in_chans, in_dim, 3, 2, 1, bias=False), |
|
nn.ReLU(), |
|
Conv2d_BN(in_dim, dim, 3, 2, 1, bias=False), |
|
nn.ReLU() |
|
) |
|
else: |
|
self.proj = lambda x: pixel_unshuffle(x, factor=4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.conv_down = nn.Sequential(Conv2d_BN(in_chans*16, dim, 3, 1, 1), |
|
nn.ReLU(), |
|
) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
x = self.conv_down(x) |
|
return x |
|
|
|
|
|
|
|
class ConvBlock(nn.Module): |
|
""" |
|
Convolutional block, used in first couple of stages |
|
Experimented with plan resnet-18 like modules, they are the best in terms of throughput |
|
Experimented with RepVGG, dont see significant improvement in accuracy |
|
Finally, YOLOv8 idea seem to work fine (resnet-18 like block with squeezed feature dimension, and feature concatendation at the end) |
|
""" |
|
def __init__(self, dim, |
|
drop_path=0., |
|
layer_scale=None, |
|
kernel_size=3, |
|
rep_vgg=False): |
|
super().__init__() |
|
self.rep_vgg = rep_vgg |
|
if not rep_vgg: |
|
self.conv1 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1) |
|
self.act1 = nn.GELU() |
|
else: |
|
self.conv1 = RepVGGBlock(dim, dim, kernel_size=kernel_size, stride=1, padding=1, groups=1) |
|
|
|
|
|
if not rep_vgg: |
|
self.conv2 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1) |
|
else: |
|
self.conv2 = RepVGGBlock(dim, dim, kernel_size=kernel_size, stride=1, padding=1, groups=1) |
|
|
|
self.layer_scale = layer_scale |
|
if layer_scale is not None and type(layer_scale) in [int, float]: |
|
self.gamma = nn.Parameter(layer_scale * torch.ones(dim)) |
|
self.layer_scale = True |
|
else: |
|
self.layer_scale = False |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
input = x |
|
if not self.rep_vgg: |
|
x = self.conv1(x) |
|
x = self.act1(x) |
|
x = self.conv2(x) |
|
else: |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
if self.layer_scale: |
|
x = x * self.gamma.view(1, -1, 1, 1) |
|
x = input + self.drop_path(x) |
|
return x |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, resolution=0, |
|
seq_length=0, dim_out=None, multi_query=False): |
|
|
|
super().__init__() |
|
if not dim_out: dim_out = dim |
|
self.multi_query = multi_query |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.head_dim = dim // num_heads |
|
|
|
self.dim_internal = dim |
|
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
if not multi_query: |
|
if TRT: |
|
self.q = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.k = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.v = nn.Linear(dim, dim, bias=qkv_bias) |
|
else: |
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
else: |
|
self.qkv = nn.Linear(dim, dim + 2*self.head_dim, bias=qkv_bias) |
|
|
|
self.proj = nn.Linear(dim, dim_out, bias=False) |
|
|
|
self.pos_emb_funct = PosEmbMLPSwinv2D(window_size=[resolution, resolution], |
|
pretrained_window_size=[resolution, resolution], |
|
num_heads=num_heads, |
|
seq_length=seq_length) |
|
|
|
self.resolution = resolution |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
|
|
if not self.multi_query: |
|
if TRT: |
|
q = self.q(x).reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
k = self.k(x).reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
v = self.v(x).reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
else: |
|
qkv = self.qkv(x).reshape(B, -1, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
else: |
|
qkv = self.qkv(x) |
|
(q, k, v) = qkv.split([self.dim_internal, self.head_dim, self.head_dim], dim=2) |
|
|
|
q = q.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) |
|
k = k.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3) |
|
v = v.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
|
|
attn = self.pos_emb_funct(attn) |
|
|
|
attn = attn.softmax(dim=-1) |
|
x = (attn @ v).transpose(1, 2).reshape(B, -1, C) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
|
|
class FasterViTLayer(nn.Module): |
|
""" |
|
fastervitlayer |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
depth, |
|
num_heads, |
|
window_size, |
|
conv=False, |
|
downsample=True, |
|
mlp_ratio=4., |
|
qkv_bias=False, |
|
qk_scale=None, |
|
norm_layer=nn.LayerNorm, |
|
drop_path=0., |
|
layer_scale=None, |
|
layer_scale_conv=None, |
|
sr_dim_ratio=1, |
|
sr_ratio=1, |
|
multi_query=False, |
|
use_swiglu=True, |
|
rep_vgg=False, |
|
yolo_arch=False, |
|
downsample_shuffle=False, |
|
conv_base=False, |
|
|
|
): |
|
""" |
|
Args: |
|
dim: feature size dimension. |
|
depth: number of layers in each stage. |
|
input_resolution: input image resolution. |
|
window_size: window size in each stage. |
|
downsample: bool argument for down-sampling. |
|
mlp_ratio: MLP ratio. |
|
num_heads: number of heads in each stage. |
|
qkv_bias: bool argument for query, key, value learnable bias. |
|
qk_scale: bool argument to scaling query, key. |
|
drop: dropout rate. |
|
attn_drop: attention dropout rate. |
|
drop_path: drop path rate. |
|
norm_layer: normalization layer. |
|
layer_scale: layer scaling coefficient. |
|
""" |
|
|
|
super().__init__() |
|
self.conv = conv |
|
self.yolo_arch=False |
|
if conv: |
|
if not yolo_arch: |
|
self.blocks = nn.ModuleList([ |
|
ConvBlock(dim=dim, |
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
layer_scale=layer_scale_conv, rep_vgg=rep_vgg) |
|
for i in range(depth)]) |
|
else: |
|
self.blocks = C2f(dim,dim,n=depth,shortcut=True,e=0.5) |
|
self.yolo_arch=True |
|
else: |
|
if not isinstance(window_size, list): window_size = [window_size] |
|
self.window_size = window_size[0] |
|
self.do_single_windowing = True |
|
if not isinstance(sr_ratio, list): sr_ratio = [sr_ratio] |
|
if any([sr!=1 for sr in sr_ratio]) or len(set(window_size))>1: |
|
self.do_single_windowing = False |
|
do_windowing = True |
|
else: |
|
self.do_single_windowing = True |
|
do_windowing = False |
|
|
|
self.blocks = nn.ModuleList() |
|
for i in range(depth): |
|
|
|
self.blocks.append( |
|
MultiResolutionAttention(window_size=window_size, |
|
sr_ratio=sr_ratio, |
|
dim=dim, |
|
dim_ratio = sr_dim_ratio, |
|
num_heads=num_heads, |
|
norm_layer=norm_layer, |
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
layer_scale=layer_scale, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
use_swiglu=use_swiglu, |
|
do_windowing=do_windowing, |
|
multi_query=multi_query, |
|
conv_base=conv_base, |
|
)) |
|
|
|
self.transformer = not conv |
|
|
|
|
|
self.downsample = None if not downsample else Downsample(dim=dim, shuffle=downsample_shuffle) |
|
|
|
|
|
|
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
|
|
if self.transformer and self.do_single_windowing: |
|
H, W = x.shape[2], x.shape[3] |
|
x, pad_hw = window_partition(x, self.window_size) |
|
|
|
if not self.yolo_arch: |
|
for bn, blk in enumerate(self.blocks): |
|
x = blk(x) |
|
else: |
|
x = self.blocks(x) |
|
|
|
if self.transformer and self.do_single_windowing: |
|
x = window_reverse(x, self.window_size, H, W, pad_hw) |
|
|
|
|
|
if self.downsample is None: |
|
return x, x |
|
|
|
return self.downsample(x), x |
|
|
|
|
|
class FasterViT(nn.Module): |
|
""" |
|
FasterViT |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
in_dim, |
|
depths, |
|
window_size, |
|
mlp_ratio, |
|
num_heads, |
|
drop_path_rate=0.2, |
|
in_chans=3, |
|
num_classes=1000, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
layer_scale=None, |
|
layer_scale_conv=None, |
|
layer_norm_last=False, |
|
sr_ratio = [1, 1, 1, 1], |
|
max_depth = -1, |
|
conv_base=False, |
|
use_swiglu=False, |
|
multi_query=False, |
|
norm_layer=nn.LayerNorm, |
|
rep_vgg=False, |
|
drop_uniform=False, |
|
yolo_arch=False, |
|
shuffle_down=False, |
|
downsample_shuffle=False, |
|
return_full_features=False, |
|
full_features_head_dim=128, |
|
neck_start_stage=1, |
|
use_neck=False, |
|
**kwargs): |
|
""" |
|
Args: |
|
dim: feature size dimension. |
|
depths: number of layers in each stage. |
|
window_size: window size in each stage. |
|
mlp_ratio: MLP ratio. |
|
num_heads: number of heads in each stage. |
|
drop_path_rate: drop path rate. |
|
in_chans: number of input channels. |
|
num_classes: number of classes. |
|
qkv_bias: bool argument for query, key, value learnable bias. |
|
qk_scale: bool argument to scaling query, key. |
|
drop_rate: dropout rate. |
|
attn_drop_rate: attention dropout rate. |
|
norm_layer: normalization layer. |
|
layer_scale: layer scaling coefficient. |
|
return_full_features: output dense features as well as logits |
|
full_features_head_dim: number of channels in the dense features head |
|
neck_start_stage: a stage id to start full feature neck. Model has 4 stages, indix starts with 0 |
|
for 224 resolution, the output of the stage before downsample: |
|
stage 0: 56x56, stage 1: 28x28, stage 2: 14x14, stage 3: 7x7 |
|
use_neck: even for summarization embedding use neck |
|
""" |
|
super().__init__() |
|
|
|
num_features = int(dim * 2 ** (len(depths) - 1)) |
|
self.num_classes = num_classes |
|
self.patch_embed = PatchEmbed(in_chans=in_chans, in_dim=in_dim, dim=dim, shuffle_down=shuffle_down) |
|
|
|
self.return_full_features = return_full_features |
|
self.use_neck = use_neck |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
if drop_uniform: |
|
dpr = [drop_path_rate for x in range(sum(depths))] |
|
|
|
if not isinstance(max_depth, list): max_depth = [max_depth] * len(depths) |
|
|
|
self.levels = nn.ModuleList() |
|
for i in range(len(depths)): |
|
conv = True if (i == 0 or i == 1) else False |
|
|
|
level = FasterViTLayer(dim=int(dim * 2 ** i), |
|
depth=depths[i], |
|
num_heads=num_heads[i], |
|
window_size=window_size[i], |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
conv=conv, |
|
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])], |
|
downsample=(i < 3), |
|
layer_scale=layer_scale, |
|
layer_scale_conv=layer_scale_conv, |
|
sr_ratio=sr_ratio[i], |
|
use_swiglu=use_swiglu, |
|
multi_query=multi_query, |
|
norm_layer=norm_layer, |
|
rep_vgg=rep_vgg, |
|
yolo_arch=yolo_arch, |
|
downsample_shuffle=downsample_shuffle, |
|
conv_base=conv_base) |
|
|
|
self.levels.append(level) |
|
|
|
if self.return_full_features or self.use_neck: |
|
|
|
self.neck_features_proj = nn.ModuleList() |
|
self.neck_start_stage = neck_start_stage |
|
upsample_ratio = 1 |
|
for i in range(len(depths)): |
|
level_n_features_output = int(dim * 2 ** i) |
|
|
|
if self.neck_start_stage > i: continue |
|
|
|
if (upsample_ratio > 1) or full_features_head_dim!=level_n_features_output: |
|
feature_projection = nn.Sequential() |
|
|
|
|
|
|
|
if 0 : |
|
|
|
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) |
|
feature_projection.add_module("dconv", nn.ConvTranspose2d(level_n_features_output, |
|
full_features_head_dim, kernel_size=upsample_ratio, stride=upsample_ratio)) |
|
else: |
|
|
|
|
|
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) |
|
feature_projection.add_module("conv", nn.Conv2d(level_n_features_output, |
|
full_features_head_dim*upsample_ratio*upsample_ratio, kernel_size=1, stride=1)) |
|
feature_projection.add_module("upsample_pixelshuffle", nn.PixelShuffle(upsample_ratio)) |
|
|
|
else: |
|
feature_projection = nn.Sequential() |
|
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) |
|
|
|
|
|
self.neck_features_proj.append(feature_projection) |
|
|
|
if i>0 and self.levels[i-1].downsample is not None: |
|
upsample_ratio *= 2 |
|
|
|
|
|
num_features = full_features_head_dim if (self.return_full_features or self.use_neck) else num_features |
|
|
|
self.num_features = num_features |
|
|
|
self.norm = LayerNorm2d(num_features) if layer_norm_last else nn.BatchNorm2d(num_features) |
|
self.avgpool = nn.AdaptiveAvgPool2d(1) |
|
self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
self.apply(self._init_weights) |
|
|
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, LayerNorm2d): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.ones_(m.weight) |
|
nn.init.zeros_(m.bias) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay_keywords(self): |
|
return {'rpb'} |
|
|
|
def forward_features(self, x): |
|
x = self.patch_embed(x) |
|
full_features = None |
|
for il, level in enumerate(self.levels): |
|
x, pre_downsample_x = level(x) |
|
|
|
if self.return_full_features or self.use_neck: |
|
if self.neck_start_stage > il: continue |
|
if full_features is None: |
|
full_features = self.neck_features_proj[il - self.neck_start_stage](pre_downsample_x) |
|
else: |
|
|
|
feature_projection = self.neck_features_proj[il - self.neck_start_stage](pre_downsample_x) |
|
if feature_projection.shape[2] != full_features.shape[2] or feature_projection.shape[3] != full_features.shape[3]: |
|
feature_projection = torch.nn.functional.pad(feature_projection, ( 0, -feature_projection.shape[3] + full_features.shape[3], 0, -feature_projection.shape[2] + full_features.shape[2])) |
|
full_features += feature_projection |
|
|
|
|
|
x = self.norm(x) |
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
|
|
if not self.return_full_features: |
|
return x, None |
|
|
|
return x, full_features |
|
|
|
def forward(self, x): |
|
x, full_features = self.forward_features(x) |
|
x = self.head(x) |
|
if full_features is not None: |
|
return x, full_features |
|
return x |
|
|
|
def switch_to_deploy(self): |
|
''' |
|
A method to perform model self-compression |
|
merges BN into conv layers |
|
converts MLP relative positional bias into precomputed buffers |
|
''' |
|
for level in [self.patch_embed, self.levels, self.head]: |
|
for module in level.modules(): |
|
if hasattr(module, 'switch_to_deploy'): |
|
module.switch_to_deploy() |
|
|
|
@register_model |
|
def fastervit2_small(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[8, 8, [7, 7], 7], |
|
dim=96, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.2, |
|
sr_ratio=[1, 1, [1, 2], 1], |
|
use_swiglu=False, |
|
downsample_shuffle=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
@register_model |
|
def fastervit2_tiny(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[1, 3, 4, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[8, 8, [7, 7], 7], |
|
dim=80, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.2, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
downsample_shuffle=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
@register_model |
|
def fastervit2_base(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[8, 8, [7, 7], 7], |
|
dim=128, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.2, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
conv_base=True, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
@register_model |
|
def fastervit2_base_fullres1(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[8, 8, [7, 7], 7], |
|
dim=128, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.2, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
conv_base=True, |
|
use_neck=True, |
|
full_features_head_dim=1024, |
|
neck_start_stage=2, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
@register_model |
|
def fastervit2_base_fullres2(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[8, 8, [7, 7], 7], |
|
dim=128, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.2, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
conv_base=True, |
|
use_neck=True, |
|
full_features_head_dim=512, |
|
neck_start_stage=1, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
@register_model |
|
def fastervit2_base_fullres3(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[8, 8, [7, 7], 7], |
|
dim=128, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.2, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
conv_base=True, |
|
use_neck=True, |
|
full_features_head_dim=256, |
|
neck_start_stage=1, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
@register_model |
|
def fastervit2_base_fullres4(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[8, 8, [7, 7], 7], |
|
dim=128, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.2, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
conv_base=True, |
|
use_neck=True, |
|
full_features_head_dim=256, |
|
neck_start_stage=2, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
@register_model |
|
def fastervit2_base_fullres5(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[8, 8, [7, 7], 7], |
|
dim=128, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.2, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
conv_base=True, |
|
use_neck=True, |
|
full_features_head_dim=512, |
|
neck_start_stage=2, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
|
|
@register_model |
|
def fastervit2_large(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[8, 8, [7, 7], 7], |
|
dim=128+64, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.2, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
@register_model |
|
def fastervit2_large_fullres(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[None, None, [7, 7], 7], |
|
dim=192, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0., |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
conv_base=True, |
|
use_neck=True, |
|
full_features_head_dim=1536, |
|
neck_start_stage=2, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
@register_model |
|
def fastervit2_large_fullres_ws8(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[None, None, [8, 8], 8], |
|
dim=192, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0., |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
conv_base=True, |
|
use_neck=True, |
|
full_features_head_dim=1536, |
|
neck_start_stage=2, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
@register_model |
|
def fastervit2_large_fullres_ws16(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[None, None, [16, 16], 16], |
|
dim=192, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0., |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
conv_base=True, |
|
use_neck=True, |
|
full_features_head_dim=1536, |
|
neck_start_stage=2, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
@register_model |
|
def fastervit2_large_fullres_ws32(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[None, None, [32, 32], 32], |
|
dim=192, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0., |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
conv_base=True, |
|
use_neck=True, |
|
full_features_head_dim=1536, |
|
neck_start_stage=2, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
|
|
@register_model |
|
def fastervit2_xlarge(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[8, 8, [7, 7], 7], |
|
dim=128+128+64, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.2, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
|
|
|
|
@register_model |
|
def fastervit2_huge(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[8, 8, [7, 7], 7], |
|
dim=128+128+128+64, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.2, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
|
|
@register_model |
|
def fastervit2_xtiny(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[1, 3, 4, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[8, 8, [7, 7], 7], |
|
dim=64, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.1, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
downsample_shuffle=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
|
|
@register_model |
|
def fastervit2_xxtiny_5(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[1, 3, 4, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[8, 8, [7, 7], 7], |
|
dim=48, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.05, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
downsample_shuffle=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
@register_model |
|
def fastervit2_xxxtiny(pretrained=False, **kwargs): |
|
model = FasterViT(depths=[1, 3, 4, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[8, 8, [7, 7], 7], |
|
dim=32, |
|
in_dim=32, |
|
mlp_ratio=4, |
|
drop_path_rate=0.0, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
downsample_shuffle=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
**kwargs) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eradio(pretrained=False, **kwargs): |
|
return fastervit2_large_fullres(pretrained=pretrained, **kwargs) |
|
|