|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Callable, Union, Tuple, Any, Dict, NamedTuple |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from timm.models import create_model, VisionTransformer |
|
|
|
from .enable_cpe_support import enable_cpe |
|
from .input_conditioner import InputConditioner |
|
|
|
from . import extra_timm_models |
|
from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput |
|
from . import eradio_model |
|
from .enable_spectral_reparam import configure_spectral_reparam_from_args |
|
|
|
|
|
class Resolution(NamedTuple): |
|
height: int |
|
width: int |
|
|
|
|
|
class RADIOModel(nn.Module): |
|
def __init__( |
|
self, |
|
model: nn.Module, |
|
input_conditioner: InputConditioner, |
|
patch_size: int, |
|
max_resolution: int, |
|
preferred_resolution: Resolution, |
|
summary_idxs: Optional[torch.Tensor] = None, |
|
window_size: int = None, |
|
adaptors: Dict[str, AdaptorBase] = None, |
|
): |
|
super().__init__() |
|
|
|
self.model = model |
|
self.input_conditioner = input_conditioner |
|
if summary_idxs is not None: |
|
self.register_buffer('summary_idxs', summary_idxs) |
|
else: |
|
self.summary_idxs = None |
|
|
|
self._preferred_resolution = preferred_resolution |
|
self._patch_size = patch_size |
|
self._max_resolution = max_resolution |
|
self._window_size = window_size |
|
|
|
adaptors = adaptors or dict() |
|
self.adaptors = nn.ModuleDict(adaptors) |
|
|
|
@property |
|
def num_summary_tokens(self) -> int: |
|
patch_gen = getattr(self.model, "patch_generator", None) |
|
if patch_gen is not None: |
|
return patch_gen.num_skip |
|
elif self.model.global_pool == 'avg': |
|
return 0 |
|
return 1 |
|
|
|
@property |
|
def patch_size(self) -> int: |
|
return self._patch_size |
|
|
|
@property |
|
def max_resolution(self) -> int: |
|
return self._max_resolution |
|
|
|
@property |
|
def preferred_resolution(self) -> Resolution: |
|
return self._preferred_resolution |
|
|
|
@property |
|
def window_size(self) -> int: |
|
return self._window_size |
|
|
|
@property |
|
def min_resolution_step(self) -> int: |
|
res = self.patch_size |
|
if self.window_size is not None: |
|
res *= self.window_size |
|
return res |
|
|
|
def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]: |
|
ret = self.input_conditioner |
|
self.input_conditioner = nn.Identity() |
|
return ret |
|
|
|
def get_nearest_supported_resolution(self, height: int, width: int) -> Resolution: |
|
height = int(round(height / self.min_resolution_step) * self.min_resolution_step) |
|
width = int(round(width / self.min_resolution_step) * self.min_resolution_step) |
|
|
|
height = max(height, self.min_resolution_step) |
|
width = max(width, self.min_resolution_step) |
|
|
|
return Resolution(height=height, width=width) |
|
|
|
def switch_to_deploy(self): |
|
fn = getattr(self.model, 'switch_to_deploy', None) |
|
if fn is not None: |
|
fn() |
|
|
|
def forward(self, x: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
x = self.input_conditioner(x) |
|
y = self.model.forward_features(x) |
|
|
|
if isinstance(self.model, VisionTransformer): |
|
patch_gen = getattr(self.model, "patch_generator", None) |
|
if patch_gen is not None: |
|
all_summary = y[:, : patch_gen.num_cls_tokens] |
|
if self.summary_idxs is not None: |
|
bb_summary = all_summary[:, self.summary_idxs] |
|
else: |
|
bb_summary = all_summary |
|
all_feat = y[:, patch_gen.num_skip :] |
|
elif self.model.global_pool == "avg": |
|
all_summary = y[:, self.model.num_prefix_tokens :].mean(dim=1) |
|
bb_summary = all_summary |
|
all_feat = y |
|
else: |
|
all_summary = y[:, 0] |
|
bb_summary = all_summary |
|
all_feat = y[:, 1:] |
|
elif isinstance(self.model, eradio_model.FasterViT): |
|
_, f = y |
|
all_feat = f.flatten(2).transpose(1, 2) |
|
all_summary = all_feat.mean(dim=1) |
|
bb_summary = all_summary |
|
elif isinstance(y, (list, tuple)): |
|
all_summary, all_feat = y |
|
bb_summary = all_summary |
|
else: |
|
raise ValueError("Unsupported model type") |
|
|
|
all_feat = all_feat.float() |
|
ret = RadioOutput(bb_summary.flatten(1), all_feat).to(torch.float32) |
|
if self.adaptors: |
|
ret = dict(backbone=ret) |
|
for name, adaptor in self.adaptors.items(): |
|
if all_summary.ndim == 3: |
|
summary = all_summary[:, adaptor.head_idx] |
|
else: |
|
summary = all_summary |
|
ada_input = AdaptorInput(images=x, summary=summary.float(), features=all_feat) |
|
v = adaptor(ada_input).to(torch.float32) |
|
ret[name] = v |
|
|
|
return ret |
|
|
|
|
|
def create_model_from_args(args) -> nn.Module: |
|
in_chans = 3 |
|
if args.in_chans is not None: |
|
in_chans = args.in_chans |
|
elif args.input_size is not None: |
|
in_chans = args.input_size[0] |
|
|
|
|
|
weight_init = args.model_kwargs.pop("weight_init", "skip") |
|
|
|
model = create_model( |
|
args.model, |
|
pretrained=args.pretrained, |
|
in_chans=in_chans, |
|
num_classes=args.num_classes, |
|
drop_rate=args.drop, |
|
drop_path_rate=args.drop_path, |
|
drop_block_rate=args.drop_block, |
|
global_pool=args.gp, |
|
bn_momentum=args.bn_momentum, |
|
bn_eps=args.bn_eps, |
|
scriptable=args.torchscript, |
|
checkpoint_path=args.initial_checkpoint, |
|
weight_init=weight_init, |
|
**args.model_kwargs, |
|
) |
|
|
|
if hasattr(model, 'norm') and not getattr(args, 'model_norm', False): |
|
model.norm = nn.Identity() |
|
|
|
model.head = nn.Identity() |
|
|
|
assert ( |
|
not args.cls_token_per_teacher or args.cpe_max_size is not None |
|
), "CPE must be enabled for multiple CLS tokens!" |
|
|
|
if args.cpe_max_size is not None: |
|
enable_cpe( |
|
model, |
|
args.cpe_max_size, |
|
num_cls_tokens=len(args.teachers) if args.cls_token_per_teacher else 1, |
|
register_multiple=args.register_multiple, |
|
) |
|
|
|
if args.spectral_reparam: |
|
configure_spectral_reparam_from_args(model, args) |
|
|
|
return model |
|
|