E-RADIO / eradio_model.py
gheinrich's picture
Upload model
f6d64da verified
raw
history blame
51.8 kB
#!/usr/bin/env python3
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
# E-RADIO (FasterViTv2) model from
# Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. "AM-RADIO: Agglomerative Model--Reduce All Domains Into One." arXiv preprint arXiv:2312.06709 (2023).
# based on FasterViT, Swin Transformer, YOLOv8
# FasterViT:
# Ali Hatamizadeh, Greg Heinrich, Hongxu Yin, Andrew Tao, Jose M. Alvarez, Jan Kautz, and Pavlo Molchanov. "FasterViT: Fast Vision Transformers with Hierarchical Attention." arXiv preprint arXiv:2306.06189 (2023).
import torch
import torch.nn as nn
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
import numpy as np
import torch.nn.functional as F
import warnings
SIMPLER_UP_TOWER = False
#######################
## Codebase from YOLOv8
## BEGINNING
#######################
class C2f(nn.Module):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
"""From YOLOv8 codebase"""
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, drop_path=None): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
if drop_path is None:
drop_path = [0.0] * n
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0, drop_path=drop_path[i]) for i in range(n))
def forward(self, x):
"""Forward pass through C2f layer."""
y = list(self.cv1(x).chunk(2, 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
def forward_split(self, x):
"""Forward pass using split() instead of chunk()."""
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
class Bottleneck(nn.Module):
"""Standard bottleneck."""
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5, drop_path=0.0): # ch_in, ch_out, shortcut, groups, kernels, expand
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, k[0], 1)
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
self.add = shortcut and c1 == c2
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
"""'forward()' applies the YOLOv5 FPN to input data."""
return x + self.drop_path1(self.cv2(self.cv1(x))) if self.add else self.cv2(self.cv1(x))
class Conv(nn.Module):
"""Modified to support layer fusion"""
default_act = nn.SiLU() # default activation
def __init__(self, a, b, kernel_size=1, stride=1, padding=None, g=1, dilation=1, bn_weight_init=1, bias=False, act=True):
super().__init__()
self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, autopad(kernel_size, padding, dilation), dilation, g, bias=False)
if 1:
self.bn = torch.nn.BatchNorm2d(b)
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
torch.nn.init.constant_(self.bn.bias, 0)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self,x):
x = self.conv(x)
x = self.bn(x)
x = self.act(x)
return x
@torch.no_grad()
def switch_to_deploy(self):
# return 1
c, bn = self.conv, self.bn
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
w = c.weight * w[:, None, None, None]
b = bn.bias - bn.running_mean * bn.weight / \
(bn.running_var + bn.eps)**0.5
self.conv.weight.data.copy_(w)
self.conv.bias = nn.Parameter(b)
self.bn = nn.Identity()
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
#######################
## Codebase from YOLOv8
## END
#######################
def pixel_unshuffle(data, factor=2):
# performs nn.PixelShuffle(factor) in reverse, torch has some bug for ONNX and TRT, so doing it manually
B, C, H, W = data.shape
return (
data.view(B, C, factor, H // factor, factor, W // factor)
.permute(0, 1, 2, 4, 3, 5)
.reshape(B, -1, H // factor, W // factor)
)
class SwiGLU(nn.Module):
# should be more advanced, but doesnt improve results so far
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
return F.silu(gate) * x
def window_partition(x, window_size):
"""
Args:
x: (B, C, H, W)
window_size: window size
Returns:
windows - local window features (num_windows*B, window_size*window_size, C)
(Hp, Wp) - the size of the padded image
"""
B, C, H, W = x.shape
if window_size == 0 or (window_size == H and window_size == W):
windows = x.flatten(2).transpose(1, 2)
Hp, Wp = H, W
else:
pad_h = (window_size - H % window_size) % window_size
pad_w = (window_size - W % window_size) % window_size
#interpolate features
if pad_h > 0 or pad_w > 0:
x = F.pad(x, (0, pad_w, 0, pad_h, 0, 0, 0, 0))
Hp, Wp = H + pad_h, W + pad_w
x = x.view(B, C, Hp // window_size, window_size, Wp // window_size, window_size)
windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size * window_size, C)
return windows, (Hp, Wp)
class Conv2d_BN(nn.Module):
"""
Conv2d + BN layer with folding capability to speed up inference
"""
def __init__(
self,
a,
b,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
groups=1,
bn_weight_init=1,
bias=False,
):
super().__init__()
self.conv = torch.nn.Conv2d(
a, b, kernel_size, stride, padding, dilation, groups, bias=False
)
if 1:
self.bn = torch.nn.BatchNorm2d(b)
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
torch.nn.init.constant_(self.bn.bias, 0)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
@torch.no_grad()
def switch_to_deploy(self):
if not isinstance(self.bn, nn.Identity):
c, bn = self.conv, self.bn
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
w = c.weight * w[:, None, None, None]
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5
self.conv.weight.data.copy_(w)
self.conv.bias = nn.Parameter(b)
self.bn = nn.Identity()
def window_reverse(windows, window_size, H, W, pad_hw):
"""
Args:
windows: local window features (num_windows*B, window_size, window_size, C)
window_size: Window size
H: Height of image
W: Width of image
pad_w - a tuple of image passing used in windowing step
Returns:
x: (B, C, H, W)
"""
# print(f"window_reverse, windows.shape {windows.shape}")
Hp, Wp = pad_hw
if window_size == 0 or (window_size == H and window_size == W):
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
x = windows.transpose(1, 2).view(B, -1, H, W)
else:
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
x = windows.view(
B, Hp // window_size, Wp // window_size, window_size, window_size, -1
)
x = x.permute(0, 5, 1, 3, 2, 4).reshape(B, windows.shape[2], Hp, Wp)
if Hp > H or Wp > W:
x = x[:, :, :H, :W,].contiguous()
return x
class PosEmbMLPSwinv2D(nn.Module):
"""
2D positional embedding from Swin Transformer v2
Added functionality to store the positional embedding in the model and not recompute it every time
"""
def __init__(
self, window_size, pretrained_window_size, num_heads, seq_length, no_log=False, cpb_mlp_hidden=512,
):
super().__init__()
self.window_size = window_size
self.num_heads = num_heads
# mlp to generate continuous relative position bias
self.cpb_mlp = nn.Sequential(
nn.Linear(2, cpb_mlp_hidden, bias=True),
nn.ReLU(inplace=True),
nn.Linear(cpb_mlp_hidden, num_heads, bias=False),
)
self.grid_exists = False
self.seq_length = seq_length
self.deploy = False
self.num_heads = num_heads
self.no_log = no_log
self.pretrained_window_size = pretrained_window_size
self.relative_bias_window_size = window_size
relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(window_size, num_heads,
pretrained_window_size, seq_length,
no_log)
self.register_buffer("relative_coords_table", relative_coords_table)
self.register_buffer("relative_position_index", relative_position_index)
self.register_buffer("relative_bias", relative_bias) # for EMA
def relative_bias_initialization(self, window_size, num_heads, pretrained_window_size, seq_length, no_log):
# as in separate function to support window size chage after model weights loading
relative_coords_h = torch.arange(
-(window_size[0] - 1), window_size[0], dtype=torch.float32
)
relative_coords_w = torch.arange(
-(window_size[1] - 1), window_size[1], dtype=torch.float32
)
relative_coords_table = (
torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w]))
.permute(1, 2, 0)
.contiguous()
.unsqueeze(0)
) # 1, 2*Wh-1, 2*Ww-1, 2
if pretrained_window_size[0] > 0:
relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1
relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1
else:
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1
if not no_log:
relative_coords_table *= 8 # normalize to -8, 8
relative_coords_table = (
torch.sign(relative_coords_table)
* torch.log2(torch.abs(relative_coords_table) + 1.0)
/ np.log2(8)
)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :]
) # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0
).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_bias = torch.zeros(1, num_heads, seq_length, seq_length)
self.relative_bias_window_size = window_size
return relative_coords_table, relative_position_index, relative_bias
def switch_to_deploy(self):
self.deploy = True
self.grid_exists = True
def forward(self, input_tensor):
# for efficiency, we want this forward to be folded into a single operation (sum)
# if resolution stays the same, then we dont need to recompute MLP layers
if not self.deploy or self.training:
self.grid_exists = False
#compare if all elements in self.window_size list match those in self.relative_bias_window_size
if not all([self.window_size[i] == self.relative_bias_window_size[i] for i in range(len(self.window_size))]):
relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(self.window_size, self.num_heads,
self.pretrained_window_size, self.seq_length,
self.no_log)
self.relative_coords_table = relative_coords_table.to(self.relative_coords_table.device)
self.relative_position_index = relative_position_index.to(self.relative_position_index.device)
self.relative_bias = relative_bias.to(self.relative_bias.device)
if self.deploy and self.grid_exists:
input_tensor += self.relative_bias
return input_tensor
if 1:
self.grid_exists = True
relative_position_bias_table = self.cpb_mlp(
self.relative_coords_table
).view(-1, self.num_heads)
relative_position_bias = relative_position_bias_table[
self.relative_position_index.view(-1)
].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1,
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1
).contiguous() # nH, Wh*Ww, Wh*Ww
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
self.relative_bias = relative_position_bias.unsqueeze(0)
input_tensor += self.relative_bias
return input_tensor
class GRAAttentionBlock(nn.Module):
def __init__(
self,
window_size,
dim_in,
dim_out,
num_heads,
drop_path=0.0,
qk_scale=None,
qkv_bias=False,
norm_layer=nn.LayerNorm,
layer_scale=None,
use_swiglu=True,
subsample_ratio=1,
dim_ratio=1,
conv_base=False,
do_windowing=True,
multi_query=False,
cpb_mlp_hidden=512,
) -> None:
super().__init__()
self.do_windowing = do_windowing
if do_windowing:
if conv_base:
self.downsample_op = nn.Conv2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
self.downsample_mixer = nn.Identity()
self.upsample_mixer = nn.Identity()
self.upsample_op = nn.ConvTranspose2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
else:
self.downsample_op = nn.AvgPool2d(kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
self.downsample_mixer = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1) if subsample_ratio > 1 else nn.Identity()
self.upsample_mixer = nn.Upsample(scale_factor=subsample_ratio, mode='nearest') if subsample_ratio > 1 else nn.Identity()
self.upsample_op = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1, padding=0, bias=False) if subsample_ratio > 1 else nn.Identity()
self.window_size = window_size
self.norm1 = norm_layer(dim_in)
self.attn = WindowAttention(
dim_in,
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
resolution=window_size,
seq_length=window_size**2, dim_out=dim_in, multi_query=multi_query,
cpb_mlp_hidden=cpb_mlp_hidden)
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
self.gamma1 = nn.Parameter(layer_scale * torch.ones(dim_in)) if use_layer_scale else 1
### mlp layer
mlp_ratio = 4
self.norm2 = norm_layer(dim_in)
mlp_hidden_dim = int(dim_in * mlp_ratio)
activation = nn.GELU if not use_swiglu else SwiGLU
mlp_hidden_dim = int((4 * dim_in * 1 / 2) / 64) * 64 if use_swiglu else mlp_hidden_dim
self.mlp = Mlp(in_features=dim_in, hidden_features=mlp_hidden_dim, act_layer=activation, use_swiglu=use_swiglu)
self.gamma2 = nn.Parameter(layer_scale * torch.ones(dim_in)) if layer_scale else 1
self.drop_path2=DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
skip_connection = x
if self.do_windowing:
# performing windowing if required
x = self.downsample_op(x)
x = self.downsample_mixer(x)
if self.window_size > 0:
H, W = x.shape[2], x.shape[3]
x, pad_hw = window_partition(x, self.window_size)
# window attention
x = x + self.drop_path1(self.gamma1 * self.attn(self.norm1(x)))
# mlp layer
x = x + self.drop_path2(self.gamma2 * self.mlp(self.norm2(x)))
if self.do_windowing:
if self.window_size > 0:
x = window_reverse(x, self.window_size, H, W, pad_hw)
x = self.upsample_mixer(x)
x = self.upsample_op(x)
if (
x.shape[2] != skip_connection.shape[2]
or x.shape[3] != skip_connection.shape[3]
):
x = torch.nn.functional.pad(
x,
(
0,
-x.shape[3] + skip_connection.shape[3],
0,
-x.shape[2] + skip_connection.shape[2],
),
)
# need to add skip connection because downsampling and upsampling will break residual connection
# 0.5 is needed to make sure that the skip connection is not too strong
# in case of no downsample / upsample we can show that 0.5 compensates for the residual connection
x = 0.5 * x + 0.5 * skip_connection
return x
class MultiResolutionAttention(nn.Module):
"""
MultiResolutionAttention (MRA) module
The idea is to use multiple attention blocks with different resolution
Feature maps are downsampled / upsampled for each attention block on different blocks
Every attention block supports
"""
def __init__(
self,
window_size,
sr_ratio,
dim,
dim_ratio,
num_heads,
do_windowing=True,
layer_scale=1e-5,
norm_layer=nn.LayerNorm,
drop_path=0,
qkv_bias=False,
qk_scale=1.0,
use_swiglu=True,
multi_query=False,
conv_base=False,
cpb_mlp_hidden=512
) -> None:
"""
Args:
input_resolution: input image resolution
window_size: window size
compression_ratio: compression ratio
max_depth: maximum depth of the GRA module
"""
super().__init__()
depth = len(sr_ratio)
self.attention_blocks = nn.ModuleList()
for i in range(depth):
subsample_ratio = sr_ratio[i]
if len(window_size) > i:
window_size_local = window_size[i]
else:
window_size_local = window_size[0]
self.attention_blocks.append(
GRAAttentionBlock(
window_size=window_size_local,
dim_in=dim,
dim_out=dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
norm_layer=norm_layer,
layer_scale=layer_scale,
drop_path=drop_path,
use_swiglu=use_swiglu,
subsample_ratio=subsample_ratio,
dim_ratio=dim_ratio,
do_windowing=do_windowing,
multi_query=multi_query,
conv_base=conv_base,
cpb_mlp_hidden=cpb_mlp_hidden
),
)
def forward(self, x):
for attention_block in self.attention_blocks:
x = attention_block(x)
return x
class Mlp(nn.Module):
"""
Multi-Layer Perceptron (MLP) block
"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
use_swiglu=True,
drop=0.0,
):
"""
Args:
in_features: input features dimension.
hidden_features: hidden features dimension.
out_features: output features dimension.
act_layer: activation function.
drop: dropout rate.
"""
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(
in_features, hidden_features * (2 if use_swiglu else 1), bias=False
)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
def forward(self, x):
x_size = x.size()
x = x.view(-1, x_size[-1])
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
x = x.view(x_size)
return x
class Downsample(nn.Module):
"""
Down-sampling block
Pixel Unshuffle is used for down-sampling, works great accuracy - wise but takes 10% more TRT time
"""
def __init__(
self, dim, shuffle=False,
):
"""
Args:
dim: feature size dimension.
shuffle: idea with pixel unshuffling instead for resizing
keep_dim: bool argument for maintaining the resolution.
"""
super().__init__()
dim_out = 2 * dim
if shuffle:
self.norm = lambda x: pixel_unshuffle(x, factor=2)
self.reduction = Conv2d_BN(dim * 4, dim_out, 1, 1, 0, bias=False)
else:
self.norm = nn.Identity()
self.reduction = Conv2d_BN(dim, dim_out, 3, 2, 1, bias=False)
def forward(self, x):
x = self.norm(x)
x = self.reduction(x)
return x
class PatchEmbed(nn.Module):
"""
Patch embedding block
Used to convert image into an initial set of feature maps with lower resolution
"""
def __init__(self, in_chans=3, in_dim=64, dim=96, shuffle_down=False):
"""
Args:
in_chans: number of input channels.
in_dim: intermediate feature size dimension to speed up stem.
dim: final stem channel number
shuffle_down: use PixelUnshuffle for down-sampling, effectively increases the receptive field
"""
super().__init__()
# shuffle_down = False
if not shuffle_down:
self.proj = nn.Identity()
self.conv_down = nn.Sequential(
Conv2d_BN(in_chans, in_dim, 3, 2, 1, bias=False),
nn.ReLU(),
Conv2d_BN(in_dim, dim, 3, 2, 1, bias=False),
nn.ReLU(),
)
else:
self.proj = lambda x: pixel_unshuffle(x, factor=4)
self.conv_down = nn.Sequential(
Conv2d_BN(in_chans * 16, dim, 3, 1, 1), nn.ReLU(),
)
def forward(self, x):
x = self.proj(x)
x = self.conv_down(x)
return x
class ConvBlock(nn.Module):
"""
Convolutional block, used in first couple of stages
Experimented with plan resnet-18 like modules, they are the best in terms of throughput
Finally, YOLOv8 idea seem to work fine (resnet-18 like block with squeezed feature dimension, and feature concatendation at the end)
"""
def __init__(self, dim,
drop_path=0.,
layer_scale=None,
kernel_size=3,
):
super().__init__()
self.conv1 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
self.act1 = nn.GELU()
self.conv2 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
self.layer_scale = layer_scale
if layer_scale is not None and type(layer_scale) in [int, float]:
self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
self.layer_scale = True
else:
self.layer_scale = False
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
input = x
x = self.conv1(x)
x = self.act1(x)
x = self.conv2(x)
if self.layer_scale:
x = x * self.gamma.view(1, -1, 1, 1)
x = input + self.drop_path(x)
return x
class WindowAttention(nn.Module):
# Windowed Attention from SwinV2
# use a MLP trick to deal with various input image resolutions, then fold it to improve speed
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
resolution=0,
seq_length=0,
dim_out=None,
multi_query=False,
cpb_mlp_hidden=512,
):
# taken from EdgeViT and tweaked with attention bias.
super().__init__()
if not dim_out:
dim_out = dim
self.multi_query = multi_query
self.num_heads = num_heads
head_dim = dim // num_heads
self.head_dim = dim // num_heads
self.dim_internal = dim
self.scale = qk_scale or head_dim ** -0.5
if not multi_query:
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
else:
self.qkv = nn.Linear(dim, dim + 2 * self.head_dim, bias=qkv_bias)
self.proj = nn.Linear(dim, dim_out, bias=False)
# attention positional bias
self.pos_emb_funct = PosEmbMLPSwinv2D(
window_size=[resolution, resolution],
pretrained_window_size=[resolution, resolution],
num_heads=num_heads,
seq_length=seq_length,
cpb_mlp_hidden=cpb_mlp_hidden,
)
self.resolution = resolution
def forward(self, x):
B, N, C = x.shape
if not self.multi_query:
qkv = (
self.qkv(x)
.reshape(B, -1, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv[0], qkv[1], qkv[2]
else:
qkv = self.qkv(x)
(q, k, v) = qkv.split(
[self.dim_internal, self.head_dim, self.head_dim], dim=2
)
q = q.reshape(B, -1, self.num_heads, C // self.num_heads).permute(
0, 2, 1, 3
)
k = k.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
v = v.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = self.pos_emb_funct(attn)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, -1, C)
x = self.proj(x)
return x
class FasterViTLayer(nn.Module):
"""
fastervitlayer
"""
def __init__(
self,
dim,
depth,
num_heads,
window_size,
conv=False,
downsample=True,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
norm_layer=nn.LayerNorm,
drop_path=0.0,
layer_scale=None,
layer_scale_conv=None,
sr_dim_ratio=1,
sr_ratio=1,
multi_query=False,
use_swiglu=True,
yolo_arch=False,
downsample_shuffle=False,
conv_base=False,
cpb_mlp_hidden=512,
):
"""
Args:
dim: feature size dimension.
depth: number of layers in each stage.
input_resolution: input image resolution.
window_size: window size in each stage.
downsample: bool argument for down-sampling.
mlp_ratio: MLP ratio.
num_heads: number of heads in each stage.
qkv_bias: bool argument for query, key, value learnable bias.
qk_scale: bool argument to scaling query, key.
drop: dropout rate.
attn_drop: attention dropout rate.
drop_path: drop path rate.
norm_layer: normalization layer.
layer_scale: layer scaling coefficient.
"""
super().__init__()
self.conv = conv
self.yolo_arch = False
if conv:
if not yolo_arch:
self.blocks = nn.ModuleList(
[
ConvBlock(
dim=dim,
drop_path=drop_path[i]
if isinstance(drop_path, list)
else drop_path,
layer_scale=layer_scale_conv )
for i in range(depth)
]
)
self.blocks = nn.Sequential(*self.blocks)
else:
self.blocks = C2f(dim, dim, n=depth, shortcut=True, e=0.5)
self.yolo_arch = True
else:
if not isinstance(window_size, list):
window_size = [window_size]
self.window_size = window_size[0]
self.do_single_windowing = True
if not isinstance(sr_ratio, list):
sr_ratio = [sr_ratio]
self.sr_ratio = sr_ratio
if any([sr != 1 for sr in sr_ratio]) or len(set(window_size)) > 1:
self.do_single_windowing = False
do_windowing = True
else:
self.do_single_windowing = True
do_windowing = False
self.blocks = nn.ModuleList()
for i in range(depth):
self.blocks.append(
MultiResolutionAttention(
window_size=window_size,
sr_ratio=sr_ratio,
dim=dim,
dim_ratio=sr_dim_ratio,
num_heads=num_heads,
norm_layer=norm_layer,
drop_path=drop_path[i]
if isinstance(drop_path, list)
else drop_path,
layer_scale=layer_scale,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
use_swiglu=use_swiglu,
do_windowing=do_windowing,
multi_query=multi_query,
conv_base=conv_base,
cpb_mlp_hidden=cpb_mlp_hidden,
)
)
self.blocks = nn.Sequential(*self.blocks)
self.transformer = not conv
self.downsample = (
None if not downsample else Downsample(dim=dim, shuffle=downsample_shuffle)
)
def forward(self, x):
B, C, H, W = x.shape
# do padding for transforemr
interpolate = True
if self.transformer and interpolate:
# Windowed Attention will split feature map into windows with the size of window_size x window_size
# if the resolution is not divisible by window_size, we need to interpolate the feature map
# can be done via padding, but doing so after training hurts the model performance.
# interpolation affects the performance as well, but not as much as padding
if isinstance(self.window_size, list) or isinstance(self.window_size, tuple):
current_max_window_size = max(self.window_size)
else:
current_max_window_size = self.window_size
max_window_size = max([res_upsample*current_max_window_size for res_upsample in self.sr_ratio])
if H % max_window_size != 0 or W % max_window_size != 0:
new_h = int(np.ceil(H/max_window_size)*max_window_size)
new_w = int(np.ceil(W/max_window_size)*max_window_size)
x = F.interpolate(x, size=(new_h, new_w), mode='nearest')
warnings.warn(f"Choosen window size is not optimal for given resolution. Interpolation of features maps will be done and it can affect the performance. Max window size is {max_window_size}, feature map size is {H}x{W}, interpolated feature map size is {new_h}x{new_w}.")
if self.transformer and self.do_single_windowing:
H, W = x.shape[2], x.shape[3]
x, pad_hw = window_partition(x, self.window_size)
x = self.blocks(x)
# if not self.yolo_arch:
# for bn, blk in enumerate(self.blocks):
# x = blk(x)
# else:
# x = self.blocks(x)
if self.transformer and self.do_single_windowing:
x = window_reverse(x, self.window_size, H, W, pad_hw)
if self.transformer and interpolate:
#lets keep original resolution, might be not ideal, but for the upsampling tower we need to keep the expected resolution.
x = F.interpolate(x, size=(H, W), mode='nearest')
if self.downsample is None:
return x, x
return self.downsample(x), x # changing to output pre downsampled features
class HiResNeck(nn.Module):
"""
The block is used to output dense features from all stages
Otherwise, by default, only the last stage features are returned with FasterViTv2
"""
def __init__(self, dim, depths, neck_start_stage, full_features_head_dim):
'''
Hi Resolution neck to support output of high res features that are useful for dense tasks.
depths - total number of layers in the base model
neck_start_stage - when to start the neck, 0 - start from the first stage, 1 - start from the second stage etc.
earlier layers result in higher resolution features at the cost of compute
full_features_head_dim - number of channels in the dense features head
'''
# create feature projection layers for segmentation output
self.neck_features_proj = nn.ModuleList()
self.neck_start_stage = neck_start_stage
upsample_ratio = 1
for i in range(len(depths)):
level_n_features_output = int(dim * 2 ** i)
if self.neck_start_stage > i: continue
if (upsample_ratio > 1) or full_features_head_dim!=level_n_features_output:
feature_projection = nn.Sequential()
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) #fast, but worse
feature_projection.add_module("dconv", nn.ConvTranspose2d(level_n_features_output,
full_features_head_dim, kernel_size=upsample_ratio, stride=upsample_ratio))
else:
feature_projection = nn.Sequential()
self.neck_features_proj.append(feature_projection)
if i>0 and self.levels[i-1].downsample is not None:
upsample_ratio *= 2
def forward(self, x, il_level=-1, full_features=None):
if self.neck_start_stage > il_level:
return full_features
if full_features is None:
full_features = self.neck_features_proj[il_level - self.neck_start_stage](x)
else:
#upsample torch tensor x to match full_features size, and add to full_features
feature_projection = self.neck_features_proj[il_level - self.neck_start_stage](x)
if feature_projection.shape[2] != full_features.shape[2] or feature_projection.shape[3] != full_features.shape[3]:
feature_projection = torch.nn.functional.pad(feature_projection, ( 0, -feature_projection.shape[3] + full_features.shape[3], 0, -feature_projection.shape[2] + full_features.shape[2]))
full_features += feature_projection
return full_features
class FasterViT(nn.Module):
"""
FasterViT
"""
def __init__(
self,
dim,
in_dim,
depths,
window_size,
mlp_ratio,
num_heads,
drop_path_rate=0.2,
in_chans=3,
num_classes=1000,
qkv_bias=False,
qk_scale=None,
layer_scale=None,
layer_scale_conv=None,
layer_norm_last=False,
sr_ratio=[1, 1, 1, 1],
max_depth=-1,
conv_base=False,
use_swiglu=False,
multi_query=False,
norm_layer=nn.LayerNorm,
drop_uniform=False,
yolo_arch=False,
shuffle_down=False,
downsample_shuffle=False,
return_full_features=False,
full_features_head_dim=128,
neck_start_stage=1,
use_neck=False,
cpb_mlp_hidden=512,
**kwargs,
):
"""
Args:
dim: feature size dimension.
depths: number of layers in each stage.
window_size: window size in each stage.
mlp_ratio: MLP ratio.
num_heads: number of heads in each stage.
drop_path_rate: drop path rate.
in_chans: number of input channels.
num_classes: number of classes.
qkv_bias: bool argument for query, key, value learnable bias.
qk_scale: bool argument to scaling query, key.
drop_rate: dropout rate.
attn_drop_rate: attention dropout rate.
norm_layer: normalization layer.
layer_scale: layer scaling coefficient.
return_full_features: output dense features as well as logits
full_features_head_dim: number of channels in the dense features head
neck_start_stage: a stage id to start full feature neck. Model has 4 stages, indix starts with 0
for 224 resolution, the output of the stage before downsample:
stage 0: 56x56, stage 1: 28x28, stage 2: 14x14, stage 3: 7x7
use_neck: even for summarization embedding use neck
"""
super().__init__()
num_features = int(dim * 2 ** (len(depths) - 1))
self.num_classes = num_classes
self.patch_embed = PatchEmbed(
in_chans=in_chans, in_dim=in_dim, dim=dim, shuffle_down=shuffle_down
)
# set return_full_features true if we want to return full features from all stages
self.return_full_features = return_full_features
self.use_neck = use_neck
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
if drop_uniform:
dpr = [drop_path_rate for x in range(sum(depths))]
if not isinstance(max_depth, list):
max_depth = [max_depth] * len(depths)
self.levels = nn.ModuleList()
for i in range(len(depths)):
conv = True if (i == 0 or i == 1) else False
level = FasterViTLayer(
dim=int(dim * 2 ** i),
depth=depths[i],
num_heads=num_heads[i],
window_size=window_size[i],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
conv=conv,
drop_path=dpr[sum(depths[:i]) : sum(depths[: i + 1])],
downsample=(i < 3),
layer_scale=layer_scale,
layer_scale_conv=layer_scale_conv,
sr_ratio=sr_ratio[i],
use_swiglu=use_swiglu,
multi_query=multi_query,
norm_layer=norm_layer,
yolo_arch=yolo_arch,
downsample_shuffle=downsample_shuffle,
conv_base=conv_base,
cpb_mlp_hidden=cpb_mlp_hidden,
)
self.levels.append(level)
if not SIMPLER_UP_TOWER:
if self.return_full_features or self.use_neck:
# create feature projection layers for segmentation output
self.neck_features_proj = nn.ModuleList()
self.neck_start_stage = neck_start_stage
upsample_ratio = 1
for i in range(len(depths)):
level_n_features_output = int(dim * 2 ** i)
if self.neck_start_stage > i:
continue
if (
upsample_ratio > 1
) or full_features_head_dim != level_n_features_output:
feature_projection = nn.Sequential()
# pixel shuffle based upsampling
feature_projection.add_module(
"norm", nn.BatchNorm2d(level_n_features_output)
) # fast, but worse
feature_projection.add_module(
"conv",
nn.Conv2d(
level_n_features_output,
full_features_head_dim
* upsample_ratio
* upsample_ratio,
kernel_size=1,
stride=1,
),
)
feature_projection.add_module(
"upsample_pixelshuffle", nn.PixelShuffle(upsample_ratio)
)
else:
feature_projection = nn.Sequential()
feature_projection.add_module(
"norm", nn.BatchNorm2d(level_n_features_output)
)
self.neck_features_proj.append(feature_projection)
if i > 0 and self.levels[i - 1].downsample is not None:
upsample_ratio *= 2
else:
if self.return_full_features or self.use_neck:
self.high_res_neck = HiResNeck(dim, num_heads, depths, neck_start_stage, full_features_head_dim)
num_features = (
full_features_head_dim
if (self.return_full_features or self.use_neck)
else num_features
)
self.num_features = num_features
self.norm = (
LayerNorm2d(num_features)
if layer_norm_last
else nn.BatchNorm2d(num_features)
)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.head = (
nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()
)
self.apply(self._init_weights)
# pass
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, LayerNorm2d):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
def change_window_size(self, new_window_size):
"""
FasterViT uses windowed attention, it might be sensative to the choiuce of this parameter
especially in case of eneven partitioning of the feature maps.
FasterViT allows changing the window size post training.
Therefore it should be changed with different input image resolution.
Recommended values:
input res | window_size
224 | 7
256 | 8
386 | 12
512 | 16
Ideally, window_size should be a factor of the input resolution. In the third stage we divide the resolution by 16, so window_size should be img_res/16/2 for the third stage and img_res/32 for the last stage.
Applying in the brute force way, can be done smarter
"""
window_size = new_window_size
for module in self.modules():
if hasattr(module, "window_size"):
# check if tuple or a number
if isinstance(module.window_size, tuple):
if module.window_size[0] != window_size:
module.window_size = (window_size, window_size)
elif isinstance(module.window_size, list):
if module.window_size[0] != window_size:
module.window_size = [window_size, window_size]
else:
module.window_size = window_size
def set_optimal_window_size(self, image_dim):
"""
Using hand picked window size for various resolutions.
"""
if isinstance(image_dim, list) or isinstance(image_dim, tuple):
image_dim = min(image_dim)
if image_dim == 224:
new_window_size = 7
elif image_dim == 256:
new_window_size = 8
elif image_dim == 384:
new_window_size = 12
elif image_dim == 512:
new_window_size = 16
else:
if image_dim < 512:
new_window_size = np.ceil(image_dim / 32)
else:
new_window_size = 16
print(f"Changing window size to {new_window_size}")
self.change_window_size(new_window_size = new_window_size)
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {"rpb"}
def forward_features(self, x):
x = self.patch_embed(x)
full_features = None
for il, level in enumerate(self.levels):
x, pre_downsample_x = level(x)
if self.return_full_features or self.use_neck:
if not SIMPLER_UP_TOWER:
if self.neck_start_stage > il:
continue
if full_features is None:
full_features = self.neck_features_proj[il - self.neck_start_stage](
pre_downsample_x
)
else:
# upsample torch tensor x to match full_features size, and add to full_features
feature_projection = self.neck_features_proj[
il - self.neck_start_stage
](pre_downsample_x)
if (
feature_projection.shape[2] != full_features.shape[2]
or feature_projection.shape[3] != full_features.shape[3]
):
feature_projection = torch.nn.functional.pad(
feature_projection,
(
0,
-feature_projection.shape[3] + full_features.shape[3],
0,
-feature_projection.shape[2] + full_features.shape[2],
),
)
full_features += feature_projection
else:
full_features = self.high_res_neck(pre_downsample_x, il, full_features)
x = self.norm(x) # new version for
x = self.avgpool(x)
x = torch.flatten(x, 1)
if not self.return_full_features:
return x, None
return x, full_features
def forward(self, x):
x, full_features = self.forward_features(x)
x = self.head(x)
if full_features is not None:
return x, full_features
return x
def switch_to_deploy(self):
"""
A method to perform model self-compression
merges BN into conv layers
converts MLP relative positional bias into precomputed buffers
"""
for level in [self.patch_embed, self.levels, self.head]:
for module in level.modules():
if hasattr(module, "switch_to_deploy"):
module.switch_to_deploy()
@register_model
def fastervit2_large_fullres_ws8(pretrained=False, **kwargs):
model = FasterViT(
depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[None, None, [8, 8], 8],
dim=192,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.0,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
conv_base=True,
use_neck=True,
full_features_head_dim=1536,
neck_start_stage=2,
**kwargs,
)
if pretrained:
model.load_state_dict(torch.load(pretrained))
return model
@register_model
def fastervit2_large_fullres_ws16(pretrained=False, **kwargs):
model = FasterViT(
depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[None, None, [16, 16], 16],
dim=192,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.0,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
conv_base=True,
use_neck=True,
full_features_head_dim=1536,
neck_start_stage=2,
**kwargs,
)
if pretrained:
model.load_state_dict(torch.load(pretrained))
return model
@register_model
def fastervit2_large_fullres_ws32(pretrained=False, **kwargs):
model = FasterViT(
depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[None, None, [32, 32], 32],
dim=192,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.0,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
conv_base=True,
use_neck=True,
full_features_head_dim=1536,
neck_start_stage=2,
**kwargs,
)
if pretrained:
model.load_state_dict(torch.load(pretrained))
return model
@register_model
def eradio(pretrained=False, **kwargs):
return fastervit2_large_fullres_ws16(pretrained=pretrained, **kwargs)
'''
Suggested way to use:
from transformers import AutoModel
model = AutoModel.from_pretrained("nvidia/E-RADIO", trust_remote_code=True)
model.model.set_optimal_window_size(image_dim = data["image"][0].shape[:2])
imgs = [torch.tensor(img).permute(2,0,1)/255.0 for img in data["image"]] #res is 224
input_images = torch.stack(imgs).cuda()
model.eval()
model.cuda()
cls_token, features = model(input_images)
cls_token = features.mean([2, 3])
'''