|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from timm.models.registry import register_model |
|
|
|
from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d |
|
import numpy as np |
|
import torch.nn.functional as F |
|
import warnings |
|
|
|
|
|
SIMPLER_UP_TOWER = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
class C2f(nn.Module): |
|
"""Faster Implementation of CSP Bottleneck with 2 convolutions.""" |
|
"""From YOLOv8 codebase""" |
|
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, drop_path=None): |
|
super().__init__() |
|
if drop_path is None: |
|
drop_path = [0.0] * n |
|
|
|
self.c = int(c2 * e) |
|
self.cv1 = Conv(c1, 2 * self.c, 1, 1) |
|
self.cv2 = Conv((2 + n) * self.c, c2, 1) |
|
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0, drop_path=drop_path[i]) for i in range(n)) |
|
|
|
def forward(self, x): |
|
"""Forward pass through C2f layer.""" |
|
y = list(self.cv1(x).chunk(2, 1)) |
|
y.extend(m(y[-1]) for m in self.m) |
|
return self.cv2(torch.cat(y, 1)) |
|
|
|
def forward_split(self, x): |
|
"""Forward pass using split() instead of chunk().""" |
|
y = list(self.cv1(x).split((self.c, self.c), 1)) |
|
y.extend(m(y[-1]) for m in self.m) |
|
return self.cv2(torch.cat(y, 1)) |
|
|
|
class Bottleneck(nn.Module): |
|
"""Standard bottleneck.""" |
|
|
|
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5, drop_path=0.0): |
|
super().__init__() |
|
c_ = int(c2 * e) |
|
self.cv1 = Conv(c1, c_, k[0], 1) |
|
self.cv2 = Conv(c_, c2, k[1], 1, g=g) |
|
self.add = shortcut and c1 == c2 |
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
"""'forward()' applies the YOLOv5 FPN to input data.""" |
|
return x + self.drop_path1(self.cv2(self.cv1(x))) if self.add else self.cv2(self.cv1(x)) |
|
|
|
|
|
class Conv(nn.Module): |
|
"""Modified to support layer fusion""" |
|
default_act = nn.SiLU() |
|
|
|
def __init__(self, a, b, kernel_size=1, stride=1, padding=None, g=1, dilation=1, bn_weight_init=1, bias=False, act=True): |
|
super().__init__() |
|
|
|
self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, autopad(kernel_size, padding, dilation), dilation, g, bias=False) |
|
if 1: |
|
self.bn = torch.nn.BatchNorm2d(b) |
|
torch.nn.init.constant_(self.bn.weight, bn_weight_init) |
|
torch.nn.init.constant_(self.bn.bias, 0) |
|
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity() |
|
|
|
|
|
def forward(self,x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
x = self.act(x) |
|
return x |
|
|
|
@torch.no_grad() |
|
def switch_to_deploy(self): |
|
|
|
c, bn = self.conv, self.bn |
|
w = bn.weight / (bn.running_var + bn.eps) ** 0.5 |
|
w = c.weight * w[:, None, None, None] |
|
b = bn.bias - bn.running_mean * bn.weight / \ |
|
(bn.running_var + bn.eps)**0.5 |
|
|
|
self.conv.weight.data.copy_(w) |
|
self.conv.bias = nn.Parameter(b) |
|
|
|
self.bn = nn.Identity() |
|
|
|
def autopad(k, p=None, d=1): |
|
"""Pad to 'same' shape outputs.""" |
|
if d > 1: |
|
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] |
|
if p is None: |
|
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] |
|
return p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def pixel_unshuffle(data, factor=2): |
|
|
|
B, C, H, W = data.shape |
|
return ( |
|
data.view(B, C, factor, H // factor, factor, W // factor) |
|
.permute(0, 1, 2, 4, 3, 5) |
|
.reshape(B, -1, H // factor, W // factor) |
|
) |
|
|
|
|
|
class SwiGLU(nn.Module): |
|
|
|
def forward(self, x): |
|
x, gate = x.chunk(2, dim=-1) |
|
return F.silu(gate) * x |
|
|
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Args: |
|
x: (B, C, H, W) |
|
window_size: window size |
|
Returns: |
|
windows - local window features (num_windows*B, window_size*window_size, C) |
|
(Hp, Wp) - the size of the padded image |
|
""" |
|
B, C, H, W = x.shape |
|
|
|
if window_size == 0 or (window_size == H and window_size == W): |
|
windows = x.flatten(2).transpose(1, 2) |
|
Hp, Wp = H, W |
|
else: |
|
pad_h = (window_size - H % window_size) % window_size |
|
pad_w = (window_size - W % window_size) % window_size |
|
|
|
if pad_h > 0 or pad_w > 0: |
|
x = F.pad(x, (0, pad_w, 0, pad_h, 0, 0, 0, 0)) |
|
Hp, Wp = H + pad_h, W + pad_w |
|
|
|
x = x.view(B, C, Hp // window_size, window_size, Wp // window_size, window_size) |
|
windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size * window_size, C) |
|
|
|
return windows, (Hp, Wp) |
|
|
|
|
|
class Conv2d_BN(nn.Module): |
|
""" |
|
Conv2d + BN layer with folding capability to speed up inference |
|
""" |
|
|
|
def __init__( |
|
self, |
|
a, |
|
b, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
bn_weight_init=1, |
|
bias=False, |
|
): |
|
super().__init__() |
|
self.conv = torch.nn.Conv2d( |
|
a, b, kernel_size, stride, padding, dilation, groups, bias=False |
|
) |
|
if 1: |
|
self.bn = torch.nn.BatchNorm2d(b) |
|
torch.nn.init.constant_(self.bn.weight, bn_weight_init) |
|
torch.nn.init.constant_(self.bn.bias, 0) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
return x |
|
|
|
@torch.no_grad() |
|
def switch_to_deploy(self): |
|
if not isinstance(self.bn, nn.Identity): |
|
c, bn = self.conv, self.bn |
|
w = bn.weight / (bn.running_var + bn.eps) ** 0.5 |
|
w = c.weight * w[:, None, None, None] |
|
b = bn.bias - bn.running_mean * bn.weight / (bn.running_var + bn.eps) ** 0.5 |
|
self.conv.weight.data.copy_(w) |
|
self.conv.bias = nn.Parameter(b) |
|
self.bn = nn.Identity() |
|
|
|
|
|
def window_reverse(windows, window_size, H, W, pad_hw): |
|
""" |
|
Args: |
|
windows: local window features (num_windows*B, window_size, window_size, C) |
|
window_size: Window size |
|
H: Height of image |
|
W: Width of image |
|
pad_w - a tuple of image passing used in windowing step |
|
Returns: |
|
x: (B, C, H, W) |
|
|
|
""" |
|
|
|
Hp, Wp = pad_hw |
|
if window_size == 0 or (window_size == H and window_size == W): |
|
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size)) |
|
x = windows.transpose(1, 2).view(B, -1, H, W) |
|
else: |
|
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size)) |
|
x = windows.view( |
|
B, Hp // window_size, Wp // window_size, window_size, window_size, -1 |
|
) |
|
x = x.permute(0, 5, 1, 3, 2, 4).reshape(B, windows.shape[2], Hp, Wp) |
|
|
|
if Hp > H or Wp > W: |
|
x = x[:, :, :H, :W,].contiguous() |
|
|
|
return x |
|
|
|
|
|
class PosEmbMLPSwinv2D(nn.Module): |
|
""" |
|
2D positional embedding from Swin Transformer v2 |
|
Added functionality to store the positional embedding in the model and not recompute it every time |
|
""" |
|
def __init__( |
|
self, window_size, pretrained_window_size, num_heads, seq_length, no_log=False, cpb_mlp_hidden=512, |
|
): |
|
super().__init__() |
|
self.window_size = window_size |
|
self.num_heads = num_heads |
|
|
|
self.cpb_mlp = nn.Sequential( |
|
nn.Linear(2, cpb_mlp_hidden, bias=True), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(cpb_mlp_hidden, num_heads, bias=False), |
|
) |
|
|
|
self.grid_exists = False |
|
self.seq_length = seq_length |
|
self.deploy = False |
|
self.num_heads = num_heads |
|
self.no_log = no_log |
|
self.pretrained_window_size = pretrained_window_size |
|
self.relative_bias_window_size = window_size |
|
|
|
relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(window_size, num_heads, |
|
pretrained_window_size, seq_length, |
|
no_log) |
|
|
|
self.register_buffer("relative_coords_table", relative_coords_table) |
|
self.register_buffer("relative_position_index", relative_position_index) |
|
self.register_buffer("relative_bias", relative_bias) |
|
|
|
def relative_bias_initialization(self, window_size, num_heads, pretrained_window_size, seq_length, no_log): |
|
|
|
|
|
relative_coords_h = torch.arange( |
|
-(window_size[0] - 1), window_size[0], dtype=torch.float32 |
|
) |
|
relative_coords_w = torch.arange( |
|
-(window_size[1] - 1), window_size[1], dtype=torch.float32 |
|
) |
|
relative_coords_table = ( |
|
torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w])) |
|
.permute(1, 2, 0) |
|
.contiguous() |
|
.unsqueeze(0) |
|
) |
|
if pretrained_window_size[0] > 0: |
|
relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1 |
|
relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1 |
|
else: |
|
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1 |
|
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1 |
|
|
|
if not no_log: |
|
relative_coords_table *= 8 |
|
relative_coords_table = ( |
|
torch.sign(relative_coords_table) |
|
* torch.log2(torch.abs(relative_coords_table) + 1.0) |
|
/ np.log2(8) |
|
) |
|
|
|
|
|
coords_h = torch.arange(self.window_size[0]) |
|
coords_w = torch.arange(self.window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = ( |
|
coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
) |
|
relative_coords = relative_coords.permute( |
|
1, 2, 0 |
|
).contiguous() |
|
relative_coords[:, :, 0] += self.window_size[0] - 1 |
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
relative_position_index = relative_coords.sum(-1) |
|
|
|
relative_bias = torch.zeros(1, num_heads, seq_length, seq_length) |
|
|
|
self.relative_bias_window_size = window_size |
|
|
|
return relative_coords_table, relative_position_index, relative_bias |
|
|
|
|
|
def switch_to_deploy(self): |
|
self.deploy = True |
|
self.grid_exists = True |
|
|
|
def forward(self, input_tensor): |
|
|
|
|
|
|
|
if not self.deploy or self.training: |
|
self.grid_exists = False |
|
|
|
|
|
if not all([self.window_size[i] == self.relative_bias_window_size[i] for i in range(len(self.window_size))]): |
|
relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(self.window_size, self.num_heads, |
|
self.pretrained_window_size, self.seq_length, |
|
self.no_log) |
|
|
|
self.relative_coords_table = relative_coords_table.to(self.relative_coords_table.device) |
|
self.relative_position_index = relative_position_index.to(self.relative_position_index.device) |
|
self.relative_bias = relative_bias.to(self.relative_bias.device) |
|
|
|
if self.deploy and self.grid_exists: |
|
input_tensor += self.relative_bias |
|
return input_tensor |
|
|
|
if 1: |
|
self.grid_exists = True |
|
|
|
relative_position_bias_table = self.cpb_mlp( |
|
self.relative_coords_table |
|
).view(-1, self.num_heads) |
|
relative_position_bias = relative_position_bias_table[ |
|
self.relative_position_index.view(-1) |
|
].view( |
|
self.window_size[0] * self.window_size[1], |
|
self.window_size[0] * self.window_size[1], |
|
-1, |
|
) |
|
|
|
relative_position_bias = relative_position_bias.permute( |
|
2, 0, 1 |
|
).contiguous() |
|
relative_position_bias = 16 * torch.sigmoid(relative_position_bias) |
|
|
|
self.relative_bias = relative_position_bias.unsqueeze(0) |
|
|
|
input_tensor += self.relative_bias |
|
return input_tensor |
|
|
|
|
|
class GRAAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
window_size, |
|
dim_in, |
|
dim_out, |
|
num_heads, |
|
drop_path=0.0, |
|
qk_scale=None, |
|
qkv_bias=False, |
|
norm_layer=nn.LayerNorm, |
|
layer_scale=None, |
|
use_swiglu=True, |
|
subsample_ratio=1, |
|
dim_ratio=1, |
|
conv_base=False, |
|
do_windowing=True, |
|
multi_query=False, |
|
cpb_mlp_hidden=512, |
|
) -> None: |
|
super().__init__() |
|
|
|
|
|
self.do_windowing = do_windowing |
|
|
|
if do_windowing: |
|
if conv_base: |
|
self.downsample_op = nn.Conv2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity() |
|
self.downsample_mixer = nn.Identity() |
|
self.upsample_mixer = nn.Identity() |
|
self.upsample_op = nn.ConvTranspose2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity() |
|
else: |
|
self.downsample_op = nn.AvgPool2d(kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity() |
|
self.downsample_mixer = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1) if subsample_ratio > 1 else nn.Identity() |
|
self.upsample_mixer = nn.Upsample(scale_factor=subsample_ratio, mode='nearest') if subsample_ratio > 1 else nn.Identity() |
|
self.upsample_op = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1, padding=0, bias=False) if subsample_ratio > 1 else nn.Identity() |
|
|
|
self.window_size = window_size |
|
|
|
self.norm1 = norm_layer(dim_in) |
|
|
|
self.attn = WindowAttention( |
|
dim_in, |
|
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
resolution=window_size, |
|
seq_length=window_size**2, dim_out=dim_in, multi_query=multi_query, |
|
cpb_mlp_hidden=cpb_mlp_hidden) |
|
|
|
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float] |
|
self.gamma1 = nn.Parameter(layer_scale * torch.ones(dim_in)) if use_layer_scale else 1 |
|
|
|
|
|
mlp_ratio = 4 |
|
self.norm2 = norm_layer(dim_in) |
|
mlp_hidden_dim = int(dim_in * mlp_ratio) |
|
|
|
activation = nn.GELU if not use_swiglu else SwiGLU |
|
mlp_hidden_dim = int((4 * dim_in * 1 / 2) / 64) * 64 if use_swiglu else mlp_hidden_dim |
|
|
|
self.mlp = Mlp(in_features=dim_in, hidden_features=mlp_hidden_dim, act_layer=activation, use_swiglu=use_swiglu) |
|
|
|
self.gamma2 = nn.Parameter(layer_scale * torch.ones(dim_in)) if layer_scale else 1 |
|
self.drop_path2=DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
|
|
def forward(self, x): |
|
skip_connection = x |
|
|
|
if self.do_windowing: |
|
|
|
x = self.downsample_op(x) |
|
x = self.downsample_mixer(x) |
|
|
|
if self.window_size > 0: |
|
H, W = x.shape[2], x.shape[3] |
|
|
|
x, pad_hw = window_partition(x, self.window_size) |
|
|
|
|
|
x = x + self.drop_path1(self.gamma1 * self.attn(self.norm1(x))) |
|
|
|
x = x + self.drop_path2(self.gamma2 * self.mlp(self.norm2(x))) |
|
|
|
if self.do_windowing: |
|
if self.window_size > 0: |
|
x = window_reverse(x, self.window_size, H, W, pad_hw) |
|
|
|
x = self.upsample_mixer(x) |
|
x = self.upsample_op(x) |
|
|
|
if ( |
|
x.shape[2] != skip_connection.shape[2] |
|
or x.shape[3] != skip_connection.shape[3] |
|
): |
|
x = torch.nn.functional.pad( |
|
x, |
|
( |
|
0, |
|
-x.shape[3] + skip_connection.shape[3], |
|
0, |
|
-x.shape[2] + skip_connection.shape[2], |
|
), |
|
) |
|
|
|
|
|
|
|
x = 0.5 * x + 0.5 * skip_connection |
|
|
|
return x |
|
|
|
|
|
class MultiResolutionAttention(nn.Module): |
|
""" |
|
MultiResolutionAttention (MRA) module |
|
The idea is to use multiple attention blocks with different resolution |
|
Feature maps are downsampled / upsampled for each attention block on different blocks |
|
Every attention block supports |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
window_size, |
|
sr_ratio, |
|
dim, |
|
dim_ratio, |
|
num_heads, |
|
do_windowing=True, |
|
layer_scale=1e-5, |
|
norm_layer=nn.LayerNorm, |
|
drop_path=0, |
|
qkv_bias=False, |
|
qk_scale=1.0, |
|
use_swiglu=True, |
|
multi_query=False, |
|
conv_base=False, |
|
cpb_mlp_hidden=512 |
|
) -> None: |
|
""" |
|
Args: |
|
input_resolution: input image resolution |
|
window_size: window size |
|
compression_ratio: compression ratio |
|
max_depth: maximum depth of the GRA module |
|
""" |
|
super().__init__() |
|
|
|
depth = len(sr_ratio) |
|
|
|
self.attention_blocks = nn.ModuleList() |
|
|
|
for i in range(depth): |
|
subsample_ratio = sr_ratio[i] |
|
if len(window_size) > i: |
|
window_size_local = window_size[i] |
|
else: |
|
window_size_local = window_size[0] |
|
|
|
self.attention_blocks.append( |
|
GRAAttentionBlock( |
|
window_size=window_size_local, |
|
dim_in=dim, |
|
dim_out=dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
norm_layer=norm_layer, |
|
layer_scale=layer_scale, |
|
drop_path=drop_path, |
|
use_swiglu=use_swiglu, |
|
subsample_ratio=subsample_ratio, |
|
dim_ratio=dim_ratio, |
|
do_windowing=do_windowing, |
|
multi_query=multi_query, |
|
conv_base=conv_base, |
|
cpb_mlp_hidden=cpb_mlp_hidden |
|
), |
|
) |
|
|
|
def forward(self, x): |
|
|
|
for attention_block in self.attention_blocks: |
|
x = attention_block(x) |
|
|
|
return x |
|
|
|
|
|
class Mlp(nn.Module): |
|
""" |
|
Multi-Layer Perceptron (MLP) block |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
use_swiglu=True, |
|
drop=0.0, |
|
): |
|
""" |
|
Args: |
|
in_features: input features dimension. |
|
hidden_features: hidden features dimension. |
|
out_features: output features dimension. |
|
act_layer: activation function. |
|
drop: dropout rate. |
|
""" |
|
|
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear( |
|
in_features, hidden_features * (2 if use_swiglu else 1), bias=False |
|
) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features, bias=False) |
|
|
|
def forward(self, x): |
|
x_size = x.size() |
|
x = x.view(-1, x_size[-1]) |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.fc2(x) |
|
x = x.view(x_size) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
""" |
|
Down-sampling block |
|
|
|
Pixel Unshuffle is used for down-sampling, works great accuracy - wise but takes 10% more TRT time |
|
""" |
|
|
|
def __init__( |
|
self, dim, shuffle=False, |
|
): |
|
""" |
|
Args: |
|
dim: feature size dimension. |
|
shuffle: idea with pixel unshuffling instead for resizing |
|
keep_dim: bool argument for maintaining the resolution. |
|
""" |
|
|
|
super().__init__() |
|
dim_out = 2 * dim |
|
|
|
if shuffle: |
|
self.norm = lambda x: pixel_unshuffle(x, factor=2) |
|
self.reduction = Conv2d_BN(dim * 4, dim_out, 1, 1, 0, bias=False) |
|
else: |
|
self.norm = nn.Identity() |
|
self.reduction = Conv2d_BN(dim, dim_out, 3, 2, 1, bias=False) |
|
|
|
def forward(self, x): |
|
x = self.norm(x) |
|
x = self.reduction(x) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" |
|
Patch embedding block |
|
Used to convert image into an initial set of feature maps with lower resolution |
|
|
|
""" |
|
|
|
def __init__(self, in_chans=3, in_dim=64, dim=96, shuffle_down=False): |
|
""" |
|
Args: |
|
in_chans: number of input channels. |
|
in_dim: intermediate feature size dimension to speed up stem. |
|
dim: final stem channel number |
|
shuffle_down: use PixelUnshuffle for down-sampling, effectively increases the receptive field |
|
""" |
|
|
|
super().__init__() |
|
|
|
if not shuffle_down: |
|
self.proj = nn.Identity() |
|
self.conv_down = nn.Sequential( |
|
Conv2d_BN(in_chans, in_dim, 3, 2, 1, bias=False), |
|
nn.ReLU(), |
|
Conv2d_BN(in_dim, dim, 3, 2, 1, bias=False), |
|
nn.ReLU(), |
|
) |
|
else: |
|
self.proj = lambda x: pixel_unshuffle(x, factor=4) |
|
self.conv_down = nn.Sequential( |
|
Conv2d_BN(in_chans * 16, dim, 3, 1, 1), nn.ReLU(), |
|
) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
x = self.conv_down(x) |
|
return x |
|
|
|
|
|
class ConvBlock(nn.Module): |
|
""" |
|
Convolutional block, used in first couple of stages |
|
Experimented with plan resnet-18 like modules, they are the best in terms of throughput |
|
Finally, YOLOv8 idea seem to work fine (resnet-18 like block with squeezed feature dimension, and feature concatendation at the end) |
|
""" |
|
def __init__(self, dim, |
|
drop_path=0., |
|
layer_scale=None, |
|
kernel_size=3, |
|
): |
|
super().__init__() |
|
|
|
self.conv1 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1) |
|
self.act1 = nn.GELU() |
|
|
|
self.conv2 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1) |
|
|
|
self.layer_scale = layer_scale |
|
if layer_scale is not None and type(layer_scale) in [int, float]: |
|
self.gamma = nn.Parameter(layer_scale * torch.ones(dim)) |
|
self.layer_scale = True |
|
else: |
|
self.layer_scale = False |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
input = x |
|
|
|
x = self.conv1(x) |
|
x = self.act1(x) |
|
x = self.conv2(x) |
|
|
|
if self.layer_scale: |
|
x = x * self.gamma.view(1, -1, 1, 1) |
|
x = input + self.drop_path(x) |
|
return x |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
|
|
|
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
resolution=0, |
|
seq_length=0, |
|
dim_out=None, |
|
multi_query=False, |
|
cpb_mlp_hidden=512, |
|
): |
|
|
|
super().__init__() |
|
if not dim_out: |
|
dim_out = dim |
|
self.multi_query = multi_query |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.head_dim = dim // num_heads |
|
|
|
self.dim_internal = dim |
|
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
if not multi_query: |
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
else: |
|
self.qkv = nn.Linear(dim, dim + 2 * self.head_dim, bias=qkv_bias) |
|
|
|
self.proj = nn.Linear(dim, dim_out, bias=False) |
|
|
|
self.pos_emb_funct = PosEmbMLPSwinv2D( |
|
window_size=[resolution, resolution], |
|
pretrained_window_size=[resolution, resolution], |
|
num_heads=num_heads, |
|
seq_length=seq_length, |
|
cpb_mlp_hidden=cpb_mlp_hidden, |
|
) |
|
|
|
self.resolution = resolution |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
|
|
if not self.multi_query: |
|
qkv = ( |
|
self.qkv(x) |
|
.reshape(B, -1, 3, self.num_heads, C // self.num_heads) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
else: |
|
qkv = self.qkv(x) |
|
(q, k, v) = qkv.split( |
|
[self.dim_internal, self.head_dim, self.head_dim], dim=2 |
|
) |
|
|
|
q = q.reshape(B, -1, self.num_heads, C // self.num_heads).permute( |
|
0, 2, 1, 3 |
|
) |
|
k = k.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3) |
|
v = v.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3) |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
|
|
attn = self.pos_emb_funct(attn) |
|
|
|
attn = attn.softmax(dim=-1) |
|
x = (attn @ v).transpose(1, 2).reshape(B, -1, C) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class FasterViTLayer(nn.Module): |
|
""" |
|
fastervitlayer |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
depth, |
|
num_heads, |
|
window_size, |
|
conv=False, |
|
downsample=True, |
|
mlp_ratio=4.0, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
norm_layer=nn.LayerNorm, |
|
drop_path=0.0, |
|
layer_scale=None, |
|
layer_scale_conv=None, |
|
sr_dim_ratio=1, |
|
sr_ratio=1, |
|
multi_query=False, |
|
use_swiglu=True, |
|
yolo_arch=False, |
|
downsample_shuffle=False, |
|
conv_base=False, |
|
cpb_mlp_hidden=512, |
|
): |
|
""" |
|
Args: |
|
dim: feature size dimension. |
|
depth: number of layers in each stage. |
|
input_resolution: input image resolution. |
|
window_size: window size in each stage. |
|
downsample: bool argument for down-sampling. |
|
mlp_ratio: MLP ratio. |
|
num_heads: number of heads in each stage. |
|
qkv_bias: bool argument for query, key, value learnable bias. |
|
qk_scale: bool argument to scaling query, key. |
|
drop: dropout rate. |
|
attn_drop: attention dropout rate. |
|
drop_path: drop path rate. |
|
norm_layer: normalization layer. |
|
layer_scale: layer scaling coefficient. |
|
""" |
|
|
|
super().__init__() |
|
self.conv = conv |
|
self.yolo_arch = False |
|
if conv: |
|
if not yolo_arch: |
|
self.blocks = nn.ModuleList( |
|
[ |
|
ConvBlock( |
|
dim=dim, |
|
drop_path=drop_path[i] |
|
if isinstance(drop_path, list) |
|
else drop_path, |
|
layer_scale=layer_scale_conv ) |
|
for i in range(depth) |
|
] |
|
) |
|
self.blocks = nn.Sequential(*self.blocks) |
|
else: |
|
self.blocks = C2f(dim, dim, n=depth, shortcut=True, e=0.5) |
|
self.yolo_arch = True |
|
else: |
|
if not isinstance(window_size, list): |
|
window_size = [window_size] |
|
self.window_size = window_size[0] |
|
self.do_single_windowing = True |
|
if not isinstance(sr_ratio, list): |
|
sr_ratio = [sr_ratio] |
|
self.sr_ratio = sr_ratio |
|
if any([sr != 1 for sr in sr_ratio]) or len(set(window_size)) > 1: |
|
self.do_single_windowing = False |
|
do_windowing = True |
|
else: |
|
self.do_single_windowing = True |
|
do_windowing = False |
|
|
|
self.blocks = nn.ModuleList() |
|
for i in range(depth): |
|
|
|
self.blocks.append( |
|
MultiResolutionAttention( |
|
window_size=window_size, |
|
sr_ratio=sr_ratio, |
|
dim=dim, |
|
dim_ratio=sr_dim_ratio, |
|
num_heads=num_heads, |
|
norm_layer=norm_layer, |
|
drop_path=drop_path[i] |
|
if isinstance(drop_path, list) |
|
else drop_path, |
|
layer_scale=layer_scale, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
use_swiglu=use_swiglu, |
|
do_windowing=do_windowing, |
|
multi_query=multi_query, |
|
conv_base=conv_base, |
|
cpb_mlp_hidden=cpb_mlp_hidden, |
|
) |
|
) |
|
|
|
self.blocks = nn.Sequential(*self.blocks) |
|
|
|
self.transformer = not conv |
|
|
|
self.downsample = ( |
|
None if not downsample else Downsample(dim=dim, shuffle=downsample_shuffle) |
|
) |
|
|
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
|
|
|
|
interpolate = True |
|
if self.transformer and interpolate: |
|
|
|
|
|
|
|
|
|
if isinstance(self.window_size, list) or isinstance(self.window_size, tuple): |
|
current_max_window_size = max(self.window_size) |
|
else: |
|
current_max_window_size = self.window_size |
|
|
|
max_window_size = max([res_upsample*current_max_window_size for res_upsample in self.sr_ratio]) |
|
if H % max_window_size != 0 or W % max_window_size != 0: |
|
new_h = int(np.ceil(H/max_window_size)*max_window_size) |
|
new_w = int(np.ceil(W/max_window_size)*max_window_size) |
|
x = F.interpolate(x, size=(new_h, new_w), mode='nearest') |
|
warnings.warn(f"Choosen window size is not optimal for given resolution. Interpolation of features maps will be done and it can affect the performance. Max window size is {max_window_size}, feature map size is {H}x{W}, interpolated feature map size is {new_h}x{new_w}.") |
|
|
|
|
|
if self.transformer and self.do_single_windowing: |
|
H, W = x.shape[2], x.shape[3] |
|
x, pad_hw = window_partition(x, self.window_size) |
|
|
|
x = self.blocks(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.transformer and self.do_single_windowing: |
|
x = window_reverse(x, self.window_size, H, W, pad_hw) |
|
|
|
if self.transformer and interpolate: |
|
|
|
x = F.interpolate(x, size=(H, W), mode='nearest') |
|
|
|
if self.downsample is None: |
|
return x, x |
|
|
|
return self.downsample(x), x |
|
|
|
|
|
class HiResNeck(nn.Module): |
|
""" |
|
The block is used to output dense features from all stages |
|
Otherwise, by default, only the last stage features are returned with FasterViTv2 |
|
""" |
|
def __init__(self, dim, depths, neck_start_stage, full_features_head_dim): |
|
|
|
''' |
|
Hi Resolution neck to support output of high res features that are useful for dense tasks. |
|
depths - total number of layers in the base model |
|
neck_start_stage - when to start the neck, 0 - start from the first stage, 1 - start from the second stage etc. |
|
earlier layers result in higher resolution features at the cost of compute |
|
full_features_head_dim - number of channels in the dense features head |
|
''' |
|
|
|
self.neck_features_proj = nn.ModuleList() |
|
self.neck_start_stage = neck_start_stage |
|
upsample_ratio = 1 |
|
for i in range(len(depths)): |
|
level_n_features_output = int(dim * 2 ** i) |
|
|
|
if self.neck_start_stage > i: continue |
|
|
|
if (upsample_ratio > 1) or full_features_head_dim!=level_n_features_output: |
|
feature_projection = nn.Sequential() |
|
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) |
|
|
|
feature_projection.add_module("dconv", nn.ConvTranspose2d(level_n_features_output, |
|
full_features_head_dim, kernel_size=upsample_ratio, stride=upsample_ratio)) |
|
else: |
|
feature_projection = nn.Sequential() |
|
|
|
self.neck_features_proj.append(feature_projection) |
|
|
|
if i>0 and self.levels[i-1].downsample is not None: |
|
upsample_ratio *= 2 |
|
|
|
def forward(self, x, il_level=-1, full_features=None): |
|
if self.neck_start_stage > il_level: |
|
return full_features |
|
|
|
if full_features is None: |
|
full_features = self.neck_features_proj[il_level - self.neck_start_stage](x) |
|
else: |
|
|
|
feature_projection = self.neck_features_proj[il_level - self.neck_start_stage](x) |
|
if feature_projection.shape[2] != full_features.shape[2] or feature_projection.shape[3] != full_features.shape[3]: |
|
feature_projection = torch.nn.functional.pad(feature_projection, ( 0, -feature_projection.shape[3] + full_features.shape[3], 0, -feature_projection.shape[2] + full_features.shape[2])) |
|
full_features += feature_projection |
|
return full_features |
|
|
|
|
|
|
|
class FasterViT(nn.Module): |
|
""" |
|
FasterViT |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
in_dim, |
|
depths, |
|
window_size, |
|
mlp_ratio, |
|
num_heads, |
|
drop_path_rate=0.2, |
|
in_chans=3, |
|
num_classes=1000, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
layer_scale=None, |
|
layer_scale_conv=None, |
|
layer_norm_last=False, |
|
sr_ratio=[1, 1, 1, 1], |
|
max_depth=-1, |
|
conv_base=False, |
|
use_swiglu=False, |
|
multi_query=False, |
|
norm_layer=nn.LayerNorm, |
|
drop_uniform=False, |
|
yolo_arch=False, |
|
shuffle_down=False, |
|
downsample_shuffle=False, |
|
return_full_features=False, |
|
full_features_head_dim=128, |
|
neck_start_stage=1, |
|
use_neck=False, |
|
cpb_mlp_hidden=512, |
|
**kwargs, |
|
): |
|
""" |
|
Args: |
|
dim: feature size dimension. |
|
depths: number of layers in each stage. |
|
window_size: window size in each stage. |
|
mlp_ratio: MLP ratio. |
|
num_heads: number of heads in each stage. |
|
drop_path_rate: drop path rate. |
|
in_chans: number of input channels. |
|
num_classes: number of classes. |
|
qkv_bias: bool argument for query, key, value learnable bias. |
|
qk_scale: bool argument to scaling query, key. |
|
drop_rate: dropout rate. |
|
attn_drop_rate: attention dropout rate. |
|
norm_layer: normalization layer. |
|
layer_scale: layer scaling coefficient. |
|
return_full_features: output dense features as well as logits |
|
full_features_head_dim: number of channels in the dense features head |
|
neck_start_stage: a stage id to start full feature neck. Model has 4 stages, indix starts with 0 |
|
for 224 resolution, the output of the stage before downsample: |
|
stage 0: 56x56, stage 1: 28x28, stage 2: 14x14, stage 3: 7x7 |
|
use_neck: even for summarization embedding use neck |
|
""" |
|
super().__init__() |
|
|
|
num_features = int(dim * 2 ** (len(depths) - 1)) |
|
self.num_classes = num_classes |
|
self.patch_embed = PatchEmbed( |
|
in_chans=in_chans, in_dim=in_dim, dim=dim, shuffle_down=shuffle_down |
|
) |
|
|
|
self.return_full_features = return_full_features |
|
self.use_neck = use_neck |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
if drop_uniform: |
|
dpr = [drop_path_rate for x in range(sum(depths))] |
|
|
|
if not isinstance(max_depth, list): |
|
max_depth = [max_depth] * len(depths) |
|
|
|
self.levels = nn.ModuleList() |
|
for i in range(len(depths)): |
|
conv = True if (i == 0 or i == 1) else False |
|
|
|
level = FasterViTLayer( |
|
dim=int(dim * 2 ** i), |
|
depth=depths[i], |
|
num_heads=num_heads[i], |
|
window_size=window_size[i], |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
conv=conv, |
|
drop_path=dpr[sum(depths[:i]) : sum(depths[: i + 1])], |
|
downsample=(i < 3), |
|
layer_scale=layer_scale, |
|
layer_scale_conv=layer_scale_conv, |
|
sr_ratio=sr_ratio[i], |
|
use_swiglu=use_swiglu, |
|
multi_query=multi_query, |
|
norm_layer=norm_layer, |
|
yolo_arch=yolo_arch, |
|
downsample_shuffle=downsample_shuffle, |
|
conv_base=conv_base, |
|
cpb_mlp_hidden=cpb_mlp_hidden, |
|
|
|
) |
|
|
|
self.levels.append(level) |
|
|
|
if not SIMPLER_UP_TOWER: |
|
if self.return_full_features or self.use_neck: |
|
|
|
self.neck_features_proj = nn.ModuleList() |
|
self.neck_start_stage = neck_start_stage |
|
upsample_ratio = 1 |
|
for i in range(len(depths)): |
|
level_n_features_output = int(dim * 2 ** i) |
|
|
|
if self.neck_start_stage > i: |
|
continue |
|
|
|
if ( |
|
upsample_ratio > 1 |
|
) or full_features_head_dim != level_n_features_output: |
|
feature_projection = nn.Sequential() |
|
|
|
feature_projection.add_module( |
|
"norm", nn.BatchNorm2d(level_n_features_output) |
|
) |
|
feature_projection.add_module( |
|
"conv", |
|
nn.Conv2d( |
|
level_n_features_output, |
|
full_features_head_dim |
|
* upsample_ratio |
|
* upsample_ratio, |
|
kernel_size=1, |
|
stride=1, |
|
), |
|
) |
|
feature_projection.add_module( |
|
"upsample_pixelshuffle", nn.PixelShuffle(upsample_ratio) |
|
) |
|
else: |
|
feature_projection = nn.Sequential() |
|
feature_projection.add_module( |
|
"norm", nn.BatchNorm2d(level_n_features_output) |
|
) |
|
|
|
self.neck_features_proj.append(feature_projection) |
|
|
|
if i > 0 and self.levels[i - 1].downsample is not None: |
|
upsample_ratio *= 2 |
|
else: |
|
if self.return_full_features or self.use_neck: |
|
self.high_res_neck = HiResNeck(dim, num_heads, depths, neck_start_stage, full_features_head_dim) |
|
|
|
num_features = ( |
|
full_features_head_dim |
|
if (self.return_full_features or self.use_neck) |
|
else num_features |
|
) |
|
|
|
self.num_features = num_features |
|
|
|
self.norm = ( |
|
LayerNorm2d(num_features) |
|
if layer_norm_last |
|
else nn.BatchNorm2d(num_features) |
|
) |
|
self.avgpool = nn.AdaptiveAvgPool2d(1) |
|
self.head = ( |
|
nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity() |
|
) |
|
self.apply(self._init_weights) |
|
|
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, LayerNorm2d): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.ones_(m.weight) |
|
nn.init.zeros_(m.bias) |
|
|
|
def change_window_size(self, new_window_size): |
|
""" |
|
FasterViT uses windowed attention, it might be sensative to the choiuce of this parameter |
|
especially in case of eneven partitioning of the feature maps. |
|
FasterViT allows changing the window size post training. |
|
Therefore it should be changed with different input image resolution. |
|
Recommended values: |
|
input res | window_size |
|
224 | 7 |
|
256 | 8 |
|
386 | 12 |
|
512 | 16 |
|
Ideally, window_size should be a factor of the input resolution. In the third stage we divide the resolution by 16, so window_size should be img_res/16/2 for the third stage and img_res/32 for the last stage. |
|
Applying in the brute force way, can be done smarter |
|
""" |
|
window_size = new_window_size |
|
|
|
for module in self.modules(): |
|
if hasattr(module, "window_size"): |
|
|
|
if isinstance(module.window_size, tuple): |
|
if module.window_size[0] != window_size: |
|
module.window_size = (window_size, window_size) |
|
elif isinstance(module.window_size, list): |
|
if module.window_size[0] != window_size: |
|
module.window_size = [window_size, window_size] |
|
else: |
|
module.window_size = window_size |
|
|
|
def set_optimal_window_size(self, image_dim): |
|
""" |
|
Using hand picked window size for various resolutions. |
|
""" |
|
if isinstance(image_dim, list) or isinstance(image_dim, tuple): |
|
image_dim = min(image_dim) |
|
|
|
if image_dim == 224: |
|
new_window_size = 7 |
|
elif image_dim == 256: |
|
new_window_size = 8 |
|
elif image_dim == 384: |
|
new_window_size = 12 |
|
elif image_dim == 512: |
|
new_window_size = 16 |
|
else: |
|
if image_dim < 512: |
|
new_window_size = np.ceil(image_dim / 32) |
|
else: |
|
new_window_size = 16 |
|
|
|
print(f"Changing window size to {new_window_size}") |
|
self.change_window_size(new_window_size = new_window_size) |
|
|
|
|
|
@torch.jit.ignore |
|
def no_weight_decay_keywords(self): |
|
return {"rpb"} |
|
|
|
def forward_features(self, x): |
|
x = self.patch_embed(x) |
|
full_features = None |
|
for il, level in enumerate(self.levels): |
|
x, pre_downsample_x = level(x) |
|
|
|
if self.return_full_features or self.use_neck: |
|
if not SIMPLER_UP_TOWER: |
|
if self.neck_start_stage > il: |
|
continue |
|
if full_features is None: |
|
full_features = self.neck_features_proj[il - self.neck_start_stage]( |
|
pre_downsample_x |
|
) |
|
else: |
|
|
|
feature_projection = self.neck_features_proj[ |
|
il - self.neck_start_stage |
|
](pre_downsample_x) |
|
if ( |
|
feature_projection.shape[2] != full_features.shape[2] |
|
or feature_projection.shape[3] != full_features.shape[3] |
|
): |
|
feature_projection = torch.nn.functional.pad( |
|
feature_projection, |
|
( |
|
0, |
|
-feature_projection.shape[3] + full_features.shape[3], |
|
0, |
|
-feature_projection.shape[2] + full_features.shape[2], |
|
), |
|
) |
|
full_features += feature_projection |
|
else: |
|
full_features = self.high_res_neck(pre_downsample_x, il, full_features) |
|
|
|
x = self.norm(x) |
|
|
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
|
|
if not self.return_full_features: |
|
return x, None |
|
|
|
return x, full_features |
|
|
|
def forward(self, x): |
|
|
|
x, full_features = self.forward_features(x) |
|
|
|
x = self.head(x) |
|
if full_features is not None: |
|
return x, full_features |
|
return x |
|
|
|
def switch_to_deploy(self): |
|
""" |
|
A method to perform model self-compression |
|
merges BN into conv layers |
|
converts MLP relative positional bias into precomputed buffers |
|
""" |
|
for level in [self.patch_embed, self.levels, self.head]: |
|
for module in level.modules(): |
|
if hasattr(module, "switch_to_deploy"): |
|
module.switch_to_deploy() |
|
|
|
@register_model |
|
def fastervit2_large_fullres_ws8(pretrained=False, **kwargs): |
|
model = FasterViT( |
|
depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[None, None, [8, 8], 8], |
|
dim=192, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.0, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
conv_base=True, |
|
use_neck=True, |
|
full_features_head_dim=1536, |
|
neck_start_stage=2, |
|
**kwargs, |
|
) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
|
|
@register_model |
|
def fastervit2_large_fullres_ws16(pretrained=False, **kwargs): |
|
model = FasterViT( |
|
depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[None, None, [16, 16], 16], |
|
dim=192, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.0, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
conv_base=True, |
|
use_neck=True, |
|
full_features_head_dim=1536, |
|
neck_start_stage=2, |
|
**kwargs, |
|
) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
|
|
@register_model |
|
def fastervit2_large_fullres_ws32(pretrained=False, **kwargs): |
|
model = FasterViT( |
|
depths=[3, 3, 5, 5], |
|
num_heads=[2, 4, 8, 16], |
|
window_size=[None, None, [32, 32], 32], |
|
dim=192, |
|
in_dim=64, |
|
mlp_ratio=4, |
|
drop_path_rate=0.0, |
|
sr_ratio=[1, 1, [2, 1], 1], |
|
use_swiglu=False, |
|
yolo_arch=True, |
|
shuffle_down=False, |
|
conv_base=True, |
|
use_neck=True, |
|
full_features_head_dim=1536, |
|
neck_start_stage=2, |
|
**kwargs, |
|
) |
|
if pretrained: |
|
model.load_state_dict(torch.load(pretrained)) |
|
return model |
|
|
|
|
|
@register_model |
|
def eradio(pretrained=False, **kwargs): |
|
return fastervit2_large_fullres_ws16(pretrained=pretrained, **kwargs) |
|
|
|
''' |
|
Suggested way to use: |
|
from transformers import AutoModel |
|
model = AutoModel.from_pretrained("nvidia/E-RADIO", trust_remote_code=True) |
|
|
|
model.model.set_optimal_window_size(image_dim = data["image"][0].shape[:2]) |
|
imgs = [torch.tensor(img).permute(2,0,1)/255.0 for img in data["image"]] #res is 224 |
|
input_images = torch.stack(imgs).cuda() |
|
|
|
model.eval() |
|
model.cuda() |
|
|
|
cls_token, features = model(input_images) |
|
cls_token = features.mean([2, 3]) |
|
|
|
|
|
''' |
|
|