# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. from typing import Optional, Callable, Union, Tuple, Any, Dict, NamedTuple import torch from torch import nn from timm.models import create_model, VisionTransformer from .enable_cpe_support import enable_cpe from .input_conditioner import InputConditioner # Register extra models from . import extra_timm_models from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput from . import eradio_model from .enable_spectral_reparam import configure_spectral_reparam_from_args class Resolution(NamedTuple): height: int width: int class RADIOModel(nn.Module): def __init__( self, model: nn.Module, input_conditioner: InputConditioner, patch_size: int, max_resolution: int, preferred_resolution: Resolution, summary_idxs: Optional[torch.Tensor] = None, window_size: int = None, adaptors: Dict[str, AdaptorBase] = None, ): super().__init__() self.model = model self.input_conditioner = input_conditioner if summary_idxs is not None: self.register_buffer('summary_idxs', summary_idxs) else: self.summary_idxs = None self._preferred_resolution = preferred_resolution self._patch_size = patch_size self._max_resolution = max_resolution self._window_size = window_size adaptors = adaptors or dict() self.adaptors = nn.ModuleDict(adaptors) @property def num_summary_tokens(self) -> int: patch_gen = getattr(self.model, "patch_generator", None) if patch_gen is not None: return patch_gen.num_skip elif self.model.global_pool == 'avg': return 0 return 1 @property def patch_size(self) -> int: return self._patch_size @property def max_resolution(self) -> int: return self._max_resolution @property def preferred_resolution(self) -> Resolution: return self._preferred_resolution @property def window_size(self) -> int: return self._window_size @property def min_resolution_step(self) -> int: res = self.patch_size if self.window_size is not None: res *= self.window_size return res def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]: ret = self.input_conditioner self.input_conditioner = nn.Identity() return ret def get_nearest_supported_resolution(self, height: int, width: int) -> Resolution: height = int(round(height / self.min_resolution_step) * self.min_resolution_step) width = int(round(width / self.min_resolution_step) * self.min_resolution_step) height = max(height, self.min_resolution_step) width = max(width, self.min_resolution_step) return Resolution(height=height, width=width) def switch_to_deploy(self): fn = getattr(self.model, 'switch_to_deploy', None) if fn is not None: fn() def forward(self, x: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: x = self.input_conditioner(x) y = self.model.forward_features(x) if isinstance(self.model, VisionTransformer): patch_gen = getattr(self.model, "patch_generator", None) if patch_gen is not None: all_summary = y[:, : patch_gen.num_cls_tokens] if self.summary_idxs is not None: bb_summary = all_summary[:, self.summary_idxs] else: bb_summary = all_summary all_feat = y[:, patch_gen.num_skip :] elif self.model.global_pool == "avg": all_summary = y[:, self.model.num_prefix_tokens :].mean(dim=1) bb_summary = all_summary all_feat = y else: all_summary = y[:, 0] bb_summary = all_summary all_feat = y[:, 1:] elif isinstance(self.model, eradio_model.FasterViT): _, f = y all_feat = f.flatten(2).transpose(1, 2) all_summary = all_feat.mean(dim=1) bb_summary = all_summary elif isinstance(y, (list, tuple)): all_summary, all_feat = y bb_summary = all_summary else: raise ValueError("Unsupported model type") all_feat = all_feat.float() ret = RadioOutput(bb_summary.flatten(1), all_feat).to(torch.float32) if self.adaptors: ret = dict(backbone=ret) for name, adaptor in self.adaptors.items(): if all_summary.ndim == 3: summary = all_summary[:, adaptor.head_idx] else: summary = all_summary ada_input = AdaptorInput(images=x, summary=summary.float(), features=all_feat) v = adaptor(ada_input).to(torch.float32) ret[name] = v return ret def create_model_from_args(args) -> nn.Module: in_chans = 3 if args.in_chans is not None: in_chans = args.in_chans elif args.input_size is not None: in_chans = args.input_size[0] # Skip weight initialization unless it's explicitly requested. weight_init = args.model_kwargs.pop("weight_init", "skip") model = create_model( args.model, pretrained=args.pretrained, in_chans=in_chans, num_classes=args.num_classes, drop_rate=args.drop, drop_path_rate=args.drop_path, drop_block_rate=args.drop_block, global_pool=args.gp, bn_momentum=args.bn_momentum, bn_eps=args.bn_eps, scriptable=args.torchscript, checkpoint_path=args.initial_checkpoint, weight_init=weight_init, **args.model_kwargs, ) if hasattr(model, 'norm') and not getattr(args, 'model_norm', False): model.norm = nn.Identity() model.head = nn.Identity() assert ( not args.cls_token_per_teacher or args.cpe_max_size is not None ), "CPE must be enabled for multiple CLS tokens!" if args.cpe_max_size is not None: enable_cpe( model, args.cpe_max_size, num_cls_tokens=len(args.teachers) if args.cls_token_per_teacher else 1, register_multiple=args.register_multiple, ) if args.spectral_reparam: configure_spectral_reparam_from_args(model, args) return model