zihanliu commited on
Commit
7095ca6
1 Parent(s): 6085a8e

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +122 -0
README.md ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - nvidia
8
+ - chatqa-1.5
9
+ - chatqa
10
+ - llama-3
11
+ - pytorch
12
+ ---
13
+
14
+
15
+ ## Model Details
16
+ We release ChatQA-1.5, which excels at RAG-based conversational question answering (QA). ChatQA-1.5 is built using the training recipe from [ChatQA (1.0)](https://arxiv.org/abs/2401.10225), and it is built on top of Llama-3 foundation model. Additionally, we incorporate more conversational QA data to enhance its tabular and arithmatic calculation capability. ChatQA-1.5 has two variants: ChatQA-1.5-8B and ChatQA-1.5-70B.
17
+
18
+
19
+ ## Benchmark Results
20
+ Results in ConvRAG Bench are as follows:
21
+
22
+ | | ChatQA-1.0-7B | Command-R-Plus | Llama-3-instruct-70b | GPT-4-0613 | ChatQA-1.0-70B | ChatQA-1.5-8B | ChatQA-1.5-70B |
23
+ | -- |:--:|:--:|:--:|:--:|:--:|:--:|:--:|
24
+ | Doc2Dial | 37.88 | 33.51 | 37.88 | 34.16 | 38.9 | 39.33 | 41.26 |
25
+ | QuAC | 29.69 | 34.16 | 36.96 | 40.29 | 41.82 | 39.73 | 38.82 |
26
+ | QReCC | 46.97 | 49.77 | 51.34 | 52.01 | 48.05 | 49.03 | 51.40 |
27
+ | CoQA | 76.61 | 69.71 | 76.98 | 77.42 | 78.57 | 76.46 | 78.44 |
28
+ | DoQA | 41.57 | 40.67 | 41.24 | 43.39 | 51.94 | 49.6 | 50.67 |
29
+ | ConvFinQA | 51.61 | 71.21 | 76.6 | 81.28 | 73.69 | 78.46 | 81.88 |
30
+ | SQA | 61.87 | 74.07 | 69.61 | 79.21 | 69.14 | 73.28 | 83.82 |
31
+ | TopioCQA | 45.45 | 53.77 | 49.72 | 45.09 | 50.98 | 49.96 | 55.63 |
32
+ | HybriDial* | 54.51 | 46.7 | 48.59 | 49.81 | 56.44 | 65.76 | 68.27 |
33
+ | INSCIT | 30.96 | 35.76 | 36.23 | 36.34 | 31.9 | 30.1 | 32.31 |
34
+ | Average (all) | 47.71 | 50.93 | 52.52 | 53.90 | 54.14 | 55.17 | 58.25 |
35
+ | Average (exclude HybriDial) | 46.96 | 51.40 | 52.95 | 54.35 | 53.89 | 53.99 | 57.14 |
36
+
37
+ Note that ChatQA-1.5 used some samples from the HybriDial training dataset. To ensure fair comparison, we also compare average scores excluding HybriDial. The data and evaluation scripts for ConvRAG can be found [here](https://huggingface.co/datasets/nvidia/ConvRAG-Bench).
38
+
39
+
40
+ ## Prompt Format
41
+ <pre>
42
+ System: {System}
43
+
44
+ {Context}
45
+
46
+ User: {Question}
47
+
48
+ Assistant: {Response}
49
+
50
+ User: {Question}
51
+
52
+ Assistant:
53
+ </pre>
54
+
55
+
56
+ ## How to use
57
+ ```python
58
+ from transformers import AutoTokenizer, AutoModelForCausalLM
59
+ import torch
60
+
61
+ model_id = "nvidia/ChatQA-1.5-70B"
62
+
63
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
64
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
65
+
66
+ messages = [
67
+ {"role": "user", "content": "what is the percentage change of the net income from Q4 FY23 to Q4 FY24?"}
68
+ ]
69
+
70
+ context = """NVIDIA (NASDAQ: NVDA) today reported revenue for the fourth quarter ended January 28, 2024, of $22.1 billion, up 22% from the previous quarter and up 265% from a year ago.\nFor the quarter, GAAP earnings per diluted share was $4.93, up 33% from the previous quarter and up 765% from a year ago. Non-GAAP earnings per diluted share was $5.16, up 28% from the previous quarter and up 486% from a year ago.\nQ4 Fiscal 2024 Summary\nGAAP\n| $ in millions, except earnings per share | Q4 FY24 | Q3 FY24 | Q4 FY23 | Q/Q | Y/Y |\n| Revenue | $22,103 | $18,120 | $6,051 | Up 22% | Up 265% |\n| Gross margin | 76.0% | 74.0% | 63.3% | Up 2.0 pts | Up 12.7 pts |\n| Operating expenses | $3,176 | $2,983 | $2,576 | Up 6% | Up 23% |\n| Operating income | $13,615 | $10,417 | $1,257 | Up 31% | Up 983% |\n| Net income | $12,285 | $9,243 | $1,414 | Up 33% | Up 769% |\n| Diluted earnings per share | $4.93 | $3.71 | $0.57 | Up 33% | Up 765% |"""
71
+
72
+ def get_formatted_input(messages, context):
73
+ system = "System: This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. The assistant should also indicate when the answer cannot be found in the context."
74
+ instruction = "Please give a full and complete answer for the question."
75
+
76
+ for item in messages:
77
+ if item['role'] == "user":
78
+ ## only apply this instruction for the first user turn
79
+ item['content'] = instruction + " " + item['content']
80
+ break
81
+
82
+ conversation = ""
83
+ for item in messages:
84
+ if item["role"] == "user":
85
+ conversation += "User: " + item["content"] + "\n\n"
86
+ else:
87
+ conversation += "Assistant: " + item["content"] + "\n\n"
88
+ conversation += "Assistant:"
89
+
90
+ formatted_input = system + "\n\n" + context + "\n\n" + conversation
91
+ return formatted_input
92
+
93
+ formatted_input = get_formatted_input(messages, context)
94
+ tokenized_prompt = tokenizer(tokenizer.bos_token + formatted_input, return_tensors="pt").to(model.device)
95
+
96
+ terminators = [
97
+ tokenizer.eos_token_id,
98
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
99
+ ]
100
+
101
+ outputs = model.generate(input_ids=tokenized_prompt.input_ids, attention_mask=tokenized_prompt.attention_mask, max_new_tokens=128, eos_token_id=terminators)
102
+
103
+ response = outputs[0][tokenized_prompt.input_ids.shape[-1]:]
104
+ print(tokenizer.decode(response, skip_special_tokens=True))
105
+ ```
106
+
107
+ ## Correspondence to
108
+ Zihan Liu (zihanl@nvidia.com), Wei Ping (wping@nvidia.com)
109
+
110
+ ## Citation
111
+ <pre>
112
+ @article{liu2024chatqa,
113
+ title={ChatQA: Building GPT-4 Level Conversational QA Models},
114
+ author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},
115
+ journal={arXiv preprint arXiv:2401.10225},
116
+ year={2024}}
117
+ </pre>
118
+
119
+
120
+ ## License
121
+ The use of this model is governed by the [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](https://llama.meta.com/llama3/license/)
122
+