import torch import torch.nn.functional as F from peft import PeftModel from transformers import AutoTokenizer, AutoModel import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from transformers import AutoModel, AutoConfig from transformers import LlavaNextProcessor from transformers import LlavaNextForConditionalGeneration, LlavaNextConfig from transformers.models.llava_next.modeling_llava_next import LlavaNextCausalLMOutputWithPast, image_size_to_num_patches class NVMMEmbedModel(LlavaNextForConditionalGeneration): def __init__(self, config: LlavaNextConfig): super().__init__(config) nvemb_config = AutoConfig.from_pretrained(config.retriever, trust_remote_code=True) nvemb_model = AutoModel.from_config(nvemb_config, trust_remote_code=True) self.language_model = nvemb_model.embedding_model self.latent_attention_model = nvemb_model.latent_attention_model self.preprocess_fn = LlavaNextProcessor.from_pretrained(config._name_or_path) self.preprocess_fn.tokenizer.padding_side = config.padding_side self.preprocess_fn.tokenizer.add_eos_token = config.add_eos_token self.global_image_patch_only = config.global_image_patch_only def create_pool_mask(self, attention_mask, instruction_lengths): pool_mask = attention_mask.clone() if instruction_lengths.unique().shape[0] == 1: length = instruction_lengths[0].item() pool_mask[:, :length] = 0 else: for i, length in enumerate(instruction_lengths): pool_mask[i, :length] = 0 return pool_mask def calculate_instruction_length(self, tokenizer, prompts, prefix): instructions = [] instruction_lengths = [] for prompt in prompts: if prefix in prompt: instruction = prompt.split(prefix)[0] input_ids = tokenizer(instruction, return_tensors=None)['input_ids'] instruction_length = len(input_ids) if '' in instruction: instruction_length += (576 - 1) instruction_lengths.append(instruction_length) else: instruction_lengths.append(0) return instruction_lengths def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, image_sizes: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, instruction_lengths: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layer: Optional[int] = None, vision_feature_select_strategy: Optional[str] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, LlavaNextCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, LlavaNextForConditionalGeneration >>> model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") >>> prompt = "[INST] \nWhat is shown in this image? [/INST]" >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(text=prompt, images=image, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(**inputs, max_length=30) >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)" ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_feature_layer = ( vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer ) vision_feature_select_strategy = ( vision_feature_select_strategy if vision_feature_select_strategy is not None else self.config.vision_feature_select_strategy ) clip_global_image_feature = None if inputs_embeds is None: # 1. Extract the input embeddings # In case image_token_index is not in the embeddings (extra token but embedding don't have it) for_inputs_embeds_ids = input_ids.clone() for_inputs_embeds_ids[(input_ids == self.config.image_token_index)] = 0 for_inputs_embeds_ids[(input_ids == 32001)] = 2 #We use tokenizer from Llava-Next but later replace PAD with EOS Token inputs_embeds = self.language_model.get_input_embeddings()(for_inputs_embeds_ids) # 2. Merge text and images if pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) > 0: # ! infer image_num_patches from image_sizes image_num_patches = [ image_size_to_num_patches( image_size=imsize, grid_pinpoints=self.config.image_grid_pinpoints, patch_size=self.config.vision_config.image_size, ) for imsize in image_sizes ] # figure out if pixel_values is concatenated or stacked if pixel_values.dim() == 5: # stacking when input is (batch_size, num_patches, num_channels, height, width) _pixel_values_list = [ pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches) ] if pixel_values.shape[1] == 1: image_num_patches = [1 for imsize in image_sizes] pixel_values = torch.cat(_pixel_values_list, dim=0) elif pixel_values.dim() != 4: # otherwise has to be stacked from list of (num_patches, num_channels, height, width) raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions") image_features = self.vision_tower(pixel_values, output_hidden_states=True) clip_global_image_feature = image_features.pooler_output selected_image_feature = image_features.hidden_states[vision_feature_layer] if vision_feature_select_strategy == "default": selected_image_feature = selected_image_feature[:, 1:] elif vision_feature_select_strategy == "full": selected_image_feature = selected_image_feature image_features = self.multi_modal_projector(selected_image_feature) image_features = torch.split(image_features, image_num_patches, dim=0) # NOTE we only support multimodal_patch_merge_type == "spatial_unpad" image_features, feature_lens = self.pack_image_features( image_features, image_sizes, image_newline=self.image_newline, ) inputs_embeds = inputs_embeds.to(image_features.dtype) inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features( image_features, feature_lens, inputs_embeds, input_ids, attention_mask, position_ids, labels=labels, ) # pixel_values is not None but is empty ---> text only cases elif pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) == 0: # there are no images pass # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of # generation with cache elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1: # Retrieve the first layer to inspect the logits and mask out the hidden states # that are set to 0 first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941 batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0) # Get the target length target_length = input_ids.shape[1] past_length = first_layer_past_key_value.shape[-1] extended_attention_mask = torch.ones( (attention_mask.shape[0], past_length), dtype=attention_mask.dtype, device=attention_mask.device, ) # Filter out only the tokens that can be un-attended, this can happen # if one uses Llava + Fused modules where the cache on the # first iteration is already big enough, or if one passes custom cache valid_indices = non_attended_tokens < extended_attention_mask.size(-1) new_batch_index = batch_index[valid_indices] new_non_attended_tokens = non_attended_tokens[valid_indices] # Zero-out the places where we don't need to attend extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0 attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1) position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pool_mask = self.create_pool_mask(attention_mask, instruction_lengths) embeds = self.latent_attention_model( outputs.last_hidden_state, pool_mask, ) return LlavaNextCausalLMOutputWithPast( loss=None, logits=None, past_key_values=None, hidden_states=embeds, attentions=outputs.attentions, image_hidden_states=clip_global_image_feature, ) @torch.no_grad() def encode(self, inputs, is_query = False, instruction = None, max_length = 512, query_prefix = 'Query: '): assert type(inputs) == list, 'inputs should be a list of dictionay' prompts, imgs = [], [] if is_query: if instruction is not None: prompt_template = f"Instruct: {instruction}\n{query_prefix}\n" else: prompt_template = f"{query_prefix}\n" else: prompt_template = f"\n" for input_ in inputs: if 'img' in input_: imgs.append(input_['img']) prompt = prompt_template else: prompt = prompt_template.replace('\n', '') if ('txt' in input_) and (input_['txt'] is not None): prompt = prompt.replace('', input_['txt']) else: prompt = prompt.replace('', '') prompts.append(prompt) if len(imgs) == 0: imgs = None collated_features = self.preprocess_fn(prompts, imgs, return_tensors="pt", padding="longest", max_length=max_length, truncation=True).to(self.device) if self.global_image_patch_only and (imgs is not None): # we only use global image patch as default collated_features['pixel_values'] = collated_features['pixel_values'][:, 0:1] instruction_lengths = self.calculate_instruction_length(self.preprocess_fn.tokenizer, prompts, f'\n{query_prefix}') collated_features['instruction_lengths'] = torch.tensor(instruction_lengths).to(self.device) return self(**collated_features) AutoModel.register(LlavaNextConfig, NVMMEmbedModel) NVMMEmbedModel.register_for_auto_class("AutoModel")