Delete Mistral-NeMo-12B-Instruct-HF/run.py
Browse files
Mistral-NeMo-12B-Instruct-HF/run.py
DELETED
@@ -1,32 +0,0 @@
|
|
1 |
-
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
2 |
-
from mistral_common.protocol.instruct.messages import UserMessage
|
3 |
-
from mistral_common.protocol.instruct.request import ChatCompletionRequest
|
4 |
-
from transformers import AutoModelForCausalLM
|
5 |
-
import torch
|
6 |
-
|
7 |
-
|
8 |
-
# Load Mistral tokenizer
|
9 |
-
model_name = "nemostral"
|
10 |
-
tokenizer = MistralTokenizer.from_model(model_name)
|
11 |
-
|
12 |
-
# Tokenize a list of messages
|
13 |
-
tokenized = tokenizer.encode_chat_completion(
|
14 |
-
ChatCompletionRequest(
|
15 |
-
messages=[
|
16 |
-
UserMessage(content="How many peolpe live in France and all its neighbours? List all of them!")
|
17 |
-
],
|
18 |
-
model=model_name,
|
19 |
-
)
|
20 |
-
)
|
21 |
-
tokens, text = tokenized.tokens, tokenized.text
|
22 |
-
|
23 |
-
input_ids = torch.tensor([tokens]).to("cuda")
|
24 |
-
|
25 |
-
model = AutoModelForCausalLM.from_pretrained("./", torch_dtype=torch.bfloat16).to("cuda")
|
26 |
-
|
27 |
-
|
28 |
-
out = model.generate(input_ids, max_new_tokens=1024)
|
29 |
-
|
30 |
-
generated = out[0, input_ids.shape[-1]:-1].tolist()
|
31 |
-
|
32 |
-
print(tokenizer.decode(generated))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|