NeMo
English
nvidia
code
math
igitman commited on
Commit
d3d0ff8
·
verified ·
1 Parent(s): 50162d5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -0
README.md CHANGED
@@ -1,3 +1,115 @@
1
  ---
2
  license: llama2
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: llama2
3
+ datasets:
4
+ - nvidia/OpenMathInstruct-1
5
+ language:
6
+ - en
7
+ library_name: nemo
8
+ tags:
9
+ - nvidia
10
+ - code
11
+ - math
12
  ---
13
+
14
+
15
+ # OpenMath-CodeLlama-13b-Python
16
+
17
+ OpenMath models were designed to solve mathematical problems by integrating text-based reasoning with code blocks
18
+ executed by Python interpreter. The models were trained on [OpenMathInstruct-1](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1),
19
+ a math instruction tuning dataset with 1.8M problem-solution pairs generated using permissively licensed
20
+ [Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) model.
21
+
22
+ <table border="1">
23
+ <tr>
24
+ <td></td>
25
+ <td colspan="2" style="text-align: center;">greedy</td>
26
+ <td colspan="2" style="text-align: center;">majority@50</td>
27
+ </tr>
28
+ <tr>
29
+ <td style="text-align: center;">model</td>
30
+ <td style="text-align: center;">GSM8K</td>
31
+ <td style="text-align: center;">MATH</td>
32
+ <td style="text-align: center;">GMS8K</td>
33
+ <td style="text-align: center;">MATH</td>
34
+ </tr>
35
+ <tr>
36
+ <td style="text-align: right;">OpenMath-CodeLlama-7B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python-hf">HF</a>)</td>
37
+ <td style="text-align: center;">75.9</td>
38
+ <td style="text-align: center;">43.6</td>
39
+ <td style="text-align: center;">84.8</td>
40
+ <td style="text-align: center;">55.6</td>
41
+ </tr>
42
+ <tr>
43
+ <td style="text-align: right;">OpenMath-Mistral-7B (<a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1-hf">HF</a>)</td>
44
+ <td style="text-align: center;">80.2</td>
45
+ <td style="text-align: center;">44.5</td>
46
+ <td style="text-align: center;">86.9</td>
47
+ <td style="text-align: center;">57.2</td>
48
+ </tr>
49
+ <tr>
50
+ <td style="text-align: right;">OpenMath-CodeLlama-13B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python-hf">HF</a>)</td>
51
+ <td style="text-align: center;">78.8</td>
52
+ <td style="text-align: center;">45.5</td>
53
+ <td style="text-align: center;">86.8</td>
54
+ <td style="text-align: center;">57.6</td>
55
+ </tr>
56
+ <tr>
57
+ <td style="text-align: right;">OpenMath-CodeLlama-34B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python-hf">HF</a>)</td>
58
+ <td style="text-align: center;">80.7</td>
59
+ <td style="text-align: center;">48.3</td>
60
+ <td style="text-align: center;">88.0</td>
61
+ <td style="text-align: center;">60.2</td>
62
+ </tr>
63
+ <tr>
64
+ <td style="text-align: right;">OpenMath-Llama2-70B (<a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b-hf">HF</a>)</td>
65
+ <td style="text-align: center;"><b>84.7</b></td>
66
+ <td style="text-align: center;">46.3</td>
67
+ <td style="text-align: center;">90.1</td>
68
+ <td style="text-align: center;">58.3</td>
69
+ </tr>
70
+ <tr>
71
+ <td style="text-align: right;">OpenMath-CodeLlama-70B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python-hf">HF</a>)</td>
72
+ <td style="text-align: center;">84.6</td>
73
+ <td style="text-align: center;"><b>50.7</b></td>
74
+ <td style="text-align: center;"><b>90.8</b></td>
75
+ <td style="text-align: center;"><b>60.4</b></td>
76
+ </tr>
77
+ </table>
78
+
79
+ The pipeline we used to produce these models is fully open-sourced!
80
+
81
+ - [Code](https://github.com/Kipok/NeMo-Skills)
82
+ - [Models](https://huggingface.co/collections/nvidia/openmath-65c5619de2ba059be0775014)
83
+ - [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1)
84
+
85
+ # How to use the models?
86
+
87
+ Try to [run inference with our models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) with just a few commands!
88
+
89
+ # Reproducing our results
90
+
91
+ We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.
92
+
93
+ # Improving other models
94
+
95
+ To improve other models or to learn more about our code, read through the docs below.
96
+
97
+ - [NeMo-Skills Pipeline](https://github.com/Kipok/NeMo-Skills)
98
+ - [Generating synthetic data](https://github.com/Kipok/NeMo-Skills/blob/main/docs/synthetic-data-generation.md)
99
+ - [Finetuning models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/finetuning.md)
100
+ - [Evaluating models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/evaluation.md)
101
+
102
+ In our pipeline we use [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/),
103
+ an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere.
104
+ It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models,
105
+ offering enterprises an easy, cost-effective, and fast way to adopt generative AI.
106
+
107
+ # Citation
108
+
109
+ If you find our work useful, please consider citing us!
110
+
111
+ TODO
112
+
113
+ # License
114
+
115
+ The use of this model is governed by the [Llama 2 Community License Agreement](https://ai.meta.com/llama/license/)