Safetensors
custom_code
File size: 10,974 Bytes
3c63951
 
 
 
 
 
 
 
 
 
 
f6a2cd5
3c63951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6a2cd5
 
3c63951
f6a2cd5
 
3c63951
 
f6a2cd5
3c63951
 
 
 
 
 
f6a2cd5
 
 
 
 
 
 
 
3c63951
 
 
 
 
 
 
 
 
 
 
 
 
f6a2cd5
 
 
 
 
 
 
3c63951
 
 
f6a2cd5
 
 
 
 
 
 
 
3c63951
f6a2cd5
3c63951
 
 
f6a2cd5
3c63951
 
f6a2cd5
3c63951
 
 
 
 
 
f6a2cd5
3c63951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Copyright (c) 2023-2024, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

from logging import getLogger
import math
import os
from typing import Dict, List, Optional, Union, Tuple
from types import MethodType

import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.utils import parametrize
from torch.nn.utils.parametrizations import _SpectralNorm

from timm.models.vision_transformer import Attention, Mlp

_EPS = 1e-5


class _SNReweight(_SpectralNorm):
    def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, alpha: float = 0.05, version: int = 2, **kwargs):
        super().__init__(weight, *args, **kwargs)

        self.alpha = alpha
        self.version = version
        self.register_buffer('_sn_version', torch.tensor(version))

        if init_norm_to_current:
            # This will set the numerator to match the denominator, which should preserve the original values
            init_scale = self._get_sigma(weight, n_power_iterations=20).item()
        else:
            init_scale = 1.0

        if version == 1:
            init_value = init_scale
        elif version == 2:
            t = init_scale - alpha
            if t < _EPS:
                getLogger("spectral_reparam").warn(f'The initialized spectral norm {init_scale} is too small to be represented. Setting to {_EPS} instead.')
                t = _EPS

            init_value = math.log(math.exp(t) - 1)
        else:
            raise ValueError(f'Unsupported version: {version}')

        # Make 2D so that weight decay gets applied
        self.scale = nn.Parameter(torch.tensor([[init_value]], dtype=torch.float32, device=weight.device))

    # Re-implementing this because we need to make division by sigma safe
    def _get_sigma(self, weight: torch.Tensor, n_power_iterations: int = None) -> torch.Tensor:
        if not n_power_iterations:
            n_power_iterations = self.n_power_iterations
        if weight.ndim == 1:
            # Faster and more exact path, no need to approximate anything
            sigma = weight.norm()
        else:
            weight_mat = self._reshape_weight_to_matrix(weight)
            if self.training:
                self._power_method(weight_mat, n_power_iterations)
            # See above on why we need to clone
            u = self._u.clone(memory_format=torch.contiguous_format)
            v = self._v.clone(memory_format=torch.contiguous_format)
            # The proper way of computing this should be through F.bilinear, but
            # it seems to have some efficiency issues:
            # https://github.com/pytorch/pytorch/issues/58093
            sigma = torch.dot(u, torch.mv(weight_mat, v))

        return sigma + self.eps

    def forward(self, weight: torch.Tensor, *args, **kwargs):
        dtype = weight.dtype
        sigma = self._get_sigma(weight, *args, **kwargs)

        if self.version == 1:
            scale = self.scale
        elif self.version == 2:
            scale = F.softplus(self.scale) + self.alpha
        else:
            raise ValueError(f'Unsupported version: {self.version}')

        scale = scale.float() / sigma.float()

        y = weight * scale

        if dtype in (torch.float16, torch.bfloat16):
            y = y.to(dtype)
        return y

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
        version_key = f'{prefix}_sn_version'
        if version_key not in state_dict:
            self.version = 1
            state_dict[version_key] = torch.tensor(1)
        return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)


class _ChunkedSNReweight(nn.Module):
    def __init__(self, weight: torch.Tensor, num_chunks: int, *args, init_norm_to_current: bool = False, **kwargs):
        super().__init__()

        self.num_chunks = num_chunks
        parts = weight.split(weight.shape[0] // num_chunks, dim=0)

        self.parts = nn.ModuleList([
            _SNReweight(p, *args, init_norm_to_current=init_norm_to_current, **kwargs)
            for p in parts
        ])

    def forward(self, weight: torch.Tensor, *args, **kwargs):
        parts = weight.split(weight.shape[0] // self.num_chunks, dim=0)

        parts = [
            fn(p)
            for fn, p in zip(self.parts, parts)
        ]

        return torch.cat(parts, dim=0)


class _AttnSNReweight(_ChunkedSNReweight):
    def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, renorm_values: bool = False, **kwargs):
        super().__init__(weight, 3, *args, init_norm_to_current=init_norm_to_current, **kwargs)

        if not renorm_values:
            self.parts[2] = nn.Identity()


def enable_spectral_reparam(model: Union[nn.Module, List[nn.Module]],
                            n_power_iterations: int = 1,
                            eps: float = 1e-6,
                            init_norm_to_current: bool = False,
                            renorm_values: bool = True,
                            renorm_mlp: bool = True,
                            state_dict_guidance: Optional[Dict[str, torch.Tensor]] = None):
    if isinstance(model, (list, tuple)):
        for i, sub in enumerate(model):
            sub_sd = state_dict_guidance[i] if isinstance(state_dict_guidance, (list, tuple)) else state_dict_guidance
            enable_spectral_reparam(sub, n_power_iterations=n_power_iterations, eps=eps,
                                    init_norm_to_current=init_norm_to_current, renorm_values=renorm_values,
                                    renorm_mlp=renorm_mlp, state_dict_guidance=sub_sd)
        return

    print('Enabling spectral reparametrization')
    args = dict(n_power_iterations=n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current)
    visited_prefixes = set()

    def is_guidance_parametrized(name: str):
        if state_dict_guidance is None:
            return True

        p_name = f'{name}.parametrizations'
        is_prm = any(k for k in state_dict_guidance if k.startswith(p_name))
        return is_prm

    def parametrize_linear(linear: nn.Linear):
        parametrize.register_parametrization(
            linear,
            'weight',
            _SNReweight(linear.weight, **args)
        )

    for name, mod in model.named_modules():
        pref = '.'.join(name.split('.')[:-1])
        if pref in visited_prefixes:
            continue

        if isinstance(mod, Attention) or name.endswith('.attn'):
            if is_guidance_parametrized(f'{name}.qkv'):
                parametrize.register_parametrization(
                    mod.qkv,
                    'weight',
                    _AttnSNReweight(mod.qkv.weight, renorm_values=renorm_values, **args),
                )
            if hasattr(mod, 'proj') and is_guidance_parametrized(f'{name}.proj'):
                parametrize_linear(mod.proj)
            visited_prefixes.add(name)
        elif name.endswith('mlp') and renorm_mlp and hasattr(mod, 'w12'):
            if is_guidance_parametrized(f'{name}.w12'):
                parametrize.register_parametrization(
                    mod.w12,
                    'weight',
                    _ChunkedSNReweight(mod.w12.weight, num_chunks=2, **args),
                )
            if is_guidance_parametrized(f'{name}.w3'):
                parametrize_linear(mod.w3)
            visited_prefixes.add(name)
        elif isinstance(mod, nn.Linear) and 'patch_generator' not in name and is_guidance_parametrized(name):
            parametrize_linear(mod)


def configure_spectral_reparam_from_args(model: nn.Module, args, state_dict_guidance: Optional[Dict[str, torch.Tensor]] = None):
    spectral_reparam = getattr(args, 'spectral_reparam', False)
    if isinstance(spectral_reparam, bool) and spectral_reparam:
        enable_spectral_reparam(model, init_norm_to_current=True, state_dict_guidance=state_dict_guidance)
    elif isinstance(spectral_reparam, dict):
        enable_spectral_reparam(
            model,
            n_power_iterations=spectral_reparam.get('n_power_iterations', 1),
            eps=spectral_reparam.get('eps', 1e-12),
            init_norm_to_current=True,
            state_dict_guidance=state_dict_guidance,
        )


def disable_spectral_reparam(model: nn.Module):
    print('Disabling spectral reparametrization')
    for name, mod in model.named_modules():
        if parametrize.is_parametrized(mod):
            parametrize.remove_parametrizations(mod, 'weight')
            pass



if __name__ == '__main__':
    import argparse
    from . import radio_model as create_model

    parser = argparse.ArgumentParser(description='Remove parametrization from state dict')
    parser.add_argument('--checkpoint', type=str, required=True, help='The checkpoint to load')
    parser.add_argument('--output', type=str, default='', help='Where to store the checkpoint')
    parser.add_argument('--release', default=False, action='store_true', help='Prune extraneous checkpoint fields')
    parser.add_argument('--strict', default=False, action='store_true', help='Strictly load the state dict')

    args = parser.parse_args()

    if not args.output:
        chk_dir, chk_name = os.path.split(args.checkpoint)
        args.output = os.path.join(chk_dir, f'clean_{chk_name}')
        print(f'Set output to "{args.output}"')

    chk = torch.load(args.checkpoint, map_location='cpu', mmap=True)

    model = create_model.create_model_from_args(chk['args'])

    key = 'base_model.'
    mod_state = dict()
    extra_state = dict()
    for k, v in chk['state_dict'].items():
        if k.startswith(key):
            mod_state[k[len(key):]] = v
        else:
            extra_state[k] = v

    chk_load_info = model.load_state_dict(mod_state, strict=args.strict)
    if chk_load_info.unexpected_keys or chk_load_info.missing_keys:
        print(chk_load_info)

    if chk['args'].spectral_reparam:
        disable_spectral_reparam(model)

    if hasattr(chk['args'], 'dtype'):
        model.to(dtype=chk['args'].dtype)

    mod_state = model.state_dict()
    final_state = dict()
    final_state.update({f'{key}{k}': v for k, v in mod_state.items()})
    final_state.update(extra_state)

    chk['state_dict'] = final_state
    chk['args'].spectral_reparam = False

    if args.release:
        chk = {
            'arch': chk['arch'],
            'epoch': chk['epoch'],
            'state_dict': chk['state_dict'],
            'args': chk['args'],
        }

    torch.save(chk, args.output)
    pass