Safetensors
custom_code
gheinrich commited on
Commit
2231aab
·
verified ·
1 Parent(s): 783774a
adaptor_base.py CHANGED
@@ -6,7 +6,7 @@
6
  # distribution of this software and related documentation without an express
7
  # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
  from argparse import Namespace
9
- from typing import NamedTuple
10
 
11
  import torch
12
  from torch import nn
@@ -17,6 +17,8 @@ class AdaptorInput(NamedTuple):
17
  images: torch.Tensor
18
  summary: torch.Tensor
19
  features: torch.Tensor
 
 
20
 
21
 
22
  class RadioOutput(NamedTuple):
 
6
  # distribution of this software and related documentation without an express
7
  # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
  from argparse import Namespace
9
+ from typing import NamedTuple, Optional
10
 
11
  import torch
12
  from torch import nn
 
17
  images: torch.Tensor
18
  summary: torch.Tensor
19
  features: torch.Tensor
20
+ feature_fmt: str
21
+ patch_size: int
22
 
23
 
24
  class RadioOutput(NamedTuple):
adaptor_generic.py CHANGED
@@ -41,7 +41,14 @@ class GenericAdaptor(AdaptorBase):
41
  )
42
 
43
  def forward(self, input: AdaptorInput) -> RadioOutput:
44
- summary = self.head_mlp(input.summary)
45
- feat = self.feat_mlp(input.features)
 
 
 
 
 
 
 
46
 
47
  return RadioOutput(summary, feat)
 
41
  )
42
 
43
  def forward(self, input: AdaptorInput) -> RadioOutput:
44
+ # Convert input'd type to the type of the first parameter of the adaptor.
45
+ first_param = next(self.parameters())
46
+ summary = self.head_mlp(input.summary.to(dtype=first_param.dtype)).to(dtype=input.summary.dtype)
47
+ feat = self.feat_mlp(input.features.to(dtype=first_param.dtype)).to(dtype=input.features.dtype)
48
+
49
+ if input.feature_fmt == 'NCHW':
50
+ feat = (feat.reshape(feat.shape[0], input.images.shape[-2] // input.patch_size, input.images.shape[-1] // input.patch_size, feat.shape[2])
51
+ .permute(0, 3, 1, 2)
52
+ )
53
 
54
  return RadioOutput(summary, feat)
config.json CHANGED
@@ -41,7 +41,6 @@
41
  ],
42
  "decay_rate": 0.1,
43
  "depchain": true,
44
- "device": "cuda:0",
45
  "dist_bn": "reduce",
46
  "dist_norm_weight": 0.0,
47
  "distributed": true,
@@ -221,14 +220,8 @@
221
  "AutoConfig": "hf_model.RADIOConfig",
222
  "AutoModel": "hf_model.RADIOModel"
223
  },
224
- "feature_normalizer_config": {
225
- "embed_dim": 1280
226
- },
227
- "inter_feature_normalizer_config": {
228
- "embed_dim": 1280,
229
- "num_intermediates": 32,
230
- "rot_per_layer": true
231
- },
232
  "max_resolution": 2048,
233
  "patch_size": 16,
234
  "preferred_resolution": [
@@ -237,7 +230,7 @@
237
  ],
238
  "rename_gamma_to_weight": true,
239
  "torch_dtype": "float32",
240
- "transformers_version": "4.44.2",
241
  "version": "radio_v2.5-h",
242
  "vitdet_window_size": null
243
  }
 
41
  ],
42
  "decay_rate": 0.1,
43
  "depchain": true,
 
44
  "dist_bn": "reduce",
45
  "dist_norm_weight": 0.0,
46
  "distributed": true,
 
220
  "AutoConfig": "hf_model.RADIOConfig",
221
  "AutoModel": "hf_model.RADIOModel"
222
  },
223
+ "feature_normalizer_config": null,
224
+ "inter_feature_normalizer_config": null,
 
 
 
 
 
 
225
  "max_resolution": 2048,
226
  "patch_size": 16,
227
  "preferred_resolution": [
 
230
  ],
231
  "rename_gamma_to_weight": true,
232
  "torch_dtype": "float32",
233
+ "transformers_version": "4.47.0.dev0",
234
  "version": "radio_v2.5-h",
235
  "vitdet_window_size": null
236
  }
dinov2_arch.py ADDED
@@ -0,0 +1,1016 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the Apache License, Version 2.0
4
+ # found in the LICENSE file in the root directory of this source tree.
5
+
6
+ # References:
7
+ # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
8
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
9
+
10
+ # Nvidia
11
+ # NOTE: We re-define this model architecture primarily so that we don't have to worry about version compatibility breaking,
12
+ # but also because Huggingface does a string replace of `gamma` to something else when loading the model state,
13
+ # and this breaks loading of this model.
14
+
15
+ from enum import Enum
16
+ from functools import partial
17
+ import logging
18
+ import math
19
+ import os
20
+ import sys
21
+ from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
22
+ import warnings
23
+
24
+ import torch
25
+ from torch import nn
26
+ from torch.nn import functional as F
27
+ from torch.nn.init import trunc_normal_
28
+
29
+ _torch_has_sdpa = hasattr(F, 'scaled_dot_product_attention')
30
+
31
+
32
+ XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
33
+ try:
34
+ if XFORMERS_ENABLED:
35
+ from xformers.ops import fmha, scaled_index_add, index_select_cat, SwiGLU, memory_efficient_attention, unbind
36
+
37
+ XFORMERS_AVAILABLE = True
38
+ else:
39
+ raise ImportError
40
+ except ImportError:
41
+ XFORMERS_AVAILABLE = False
42
+
43
+
44
+ def make_2tuple(x):
45
+ if isinstance(x, tuple):
46
+ assert len(x) == 2
47
+ return x
48
+
49
+ assert isinstance(x, int)
50
+ return (x, x)
51
+
52
+
53
+ class PatchEmbed(nn.Module):
54
+ """
55
+ 2D image to patch embedding: (B,C,H,W) -> (B,N,D)
56
+
57
+ Args:
58
+ img_size: Image size.
59
+ patch_size: Patch token size.
60
+ in_chans: Number of input image channels.
61
+ embed_dim: Number of linear projection output channels.
62
+ norm_layer: Normalization layer.
63
+ """
64
+
65
+ def __init__(
66
+ self,
67
+ img_size: Union[int, Tuple[int, int]] = 224,
68
+ patch_size: Union[int, Tuple[int, int]] = 16,
69
+ in_chans: int = 3,
70
+ embed_dim: int = 768,
71
+ norm_layer: Optional[Callable] = None,
72
+ flatten_embedding: bool = True,
73
+ ) -> None:
74
+ super().__init__()
75
+
76
+ image_HW = make_2tuple(img_size)
77
+ patch_HW = make_2tuple(patch_size)
78
+ patch_grid_size = (
79
+ image_HW[0] // patch_HW[0],
80
+ image_HW[1] // patch_HW[1],
81
+ )
82
+
83
+ self.img_size = image_HW
84
+ self.patch_size = patch_HW
85
+ self.patches_resolution = patch_grid_size
86
+ self.num_patches = patch_grid_size[0] * patch_grid_size[1]
87
+
88
+ self.in_chans = in_chans
89
+ self.embed_dim = embed_dim
90
+
91
+ self.flatten_embedding = flatten_embedding
92
+
93
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
94
+ self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
95
+
96
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
97
+ _, _, H, W = x.shape
98
+ patch_H, patch_W = self.patch_size
99
+
100
+ assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
101
+ assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
102
+
103
+ x = self.proj(x) # B C H W
104
+ H, W = x.size(2), x.size(3)
105
+ x = x.flatten(2).transpose(1, 2) # B HW C
106
+ x = self.norm(x)
107
+ if not self.flatten_embedding:
108
+ x = x.reshape(-1, H, W, self.embed_dim) # B H W C
109
+ return x
110
+
111
+ def flops(self) -> float:
112
+ Ho, Wo = self.patches_resolution
113
+ flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
114
+ if self.norm is not None:
115
+ flops += Ho * Wo * self.embed_dim
116
+ return flops
117
+
118
+
119
+ class Attention(nn.Module):
120
+ def __init__(
121
+ self,
122
+ dim: int,
123
+ num_heads: int = 8,
124
+ qkv_bias: bool = False,
125
+ proj_bias: bool = True,
126
+ attn_drop: float = 0.0,
127
+ proj_drop: float = 0.0,
128
+ ) -> None:
129
+ super().__init__()
130
+ self.num_heads = num_heads
131
+ head_dim = dim // num_heads
132
+ self.scale = head_dim**-0.5
133
+
134
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
135
+ self.attn_drop = nn.Dropout(attn_drop)
136
+ self.proj = nn.Linear(dim, dim, bias=proj_bias)
137
+ self.proj_drop = nn.Dropout(proj_drop)
138
+
139
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
140
+ B, N, C = x.shape
141
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
142
+
143
+ q, k, v = qkv[0], qkv[1], qkv[2]
144
+ if _torch_has_sdpa:
145
+ x = F.scaled_dot_product_attention(
146
+ q, k, v,
147
+ is_causal=False,
148
+ dropout_p=self.attn_drop.p if self.training else 0.,
149
+ scale=self.scale,
150
+ )
151
+ else:
152
+ q = q * self.scale
153
+ attn = q @ k.transpose(-2, -1)
154
+
155
+ attn = attn.softmax(dim=-1)
156
+ attn = self.attn_drop(attn)
157
+ x = attn @ v
158
+
159
+ x = x.transpose(1, 2).reshape(B, N, C)
160
+ x = self.proj(x)
161
+ x = self.proj_drop(x)
162
+ return x
163
+
164
+
165
+ class MemEffAttention(Attention):
166
+ def forward(self, x: torch.Tensor, attn_bias=None) -> torch.Tensor:
167
+ if not XFORMERS_AVAILABLE:
168
+ if attn_bias is not None:
169
+ raise AssertionError("xFormers is required for using nested tensors")
170
+ return super().forward(x)
171
+
172
+ B, N, C = x.shape
173
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
174
+
175
+ q, k, v = unbind(qkv, 2)
176
+
177
+ x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
178
+ x = x.reshape([B, N, C])
179
+
180
+ x = self.proj(x)
181
+ x = self.proj_drop(x)
182
+ return x
183
+
184
+
185
+ class Mlp(nn.Module):
186
+ def __init__(
187
+ self,
188
+ in_features: int,
189
+ hidden_features: Optional[int] = None,
190
+ out_features: Optional[int] = None,
191
+ act_layer: Callable[..., nn.Module] = nn.GELU,
192
+ drop: float = 0.0,
193
+ bias: bool = True,
194
+ ) -> None:
195
+ super().__init__()
196
+ out_features = out_features or in_features
197
+ hidden_features = hidden_features or in_features
198
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
199
+ self.act = act_layer()
200
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
201
+ self.drop = nn.Dropout(drop)
202
+
203
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
204
+ x = self.fc1(x)
205
+ x = self.act(x)
206
+ x = self.drop(x)
207
+ x = self.fc2(x)
208
+ x = self.drop(x)
209
+ return x
210
+
211
+
212
+ class SwiGLUFFN(nn.Module):
213
+ def __init__(
214
+ self,
215
+ in_features: int,
216
+ hidden_features: Optional[int] = None,
217
+ out_features: Optional[int] = None,
218
+ act_layer: Callable[..., nn.Module] = None,
219
+ drop: float = 0.0,
220
+ bias: bool = True,
221
+ ) -> None:
222
+ super().__init__()
223
+ out_features = out_features or in_features
224
+ hidden_features = hidden_features or in_features
225
+ self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
226
+ self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
227
+
228
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
229
+ x12 = self.w12(x)
230
+ x1, x2 = x12.chunk(2, dim=-1)
231
+ hidden = F.silu(x1) * x2
232
+ return self.w3(hidden)
233
+
234
+
235
+ if not XFORMERS_AVAILABLE:
236
+ SwiGLU = SwiGLUFFN
237
+
238
+
239
+ class SwiGLUFFNFused(SwiGLU):
240
+ def __init__(
241
+ self,
242
+ in_features: int,
243
+ hidden_features: Optional[int] = None,
244
+ out_features: Optional[int] = None,
245
+ act_layer: Callable[..., nn.Module] = None,
246
+ drop: float = 0.0,
247
+ bias: bool = True,
248
+ ) -> None:
249
+ out_features = out_features or in_features
250
+ hidden_features = hidden_features or in_features
251
+ hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
252
+ super().__init__(
253
+ in_features=in_features,
254
+ hidden_features=hidden_features,
255
+ out_features=out_features,
256
+ bias=bias,
257
+ )
258
+
259
+
260
+ def drop_path(x, drop_prob: float = 0.0, training: bool = False):
261
+ if drop_prob == 0.0 or not training:
262
+ return x
263
+ keep_prob = 1 - drop_prob
264
+ shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
265
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
266
+ if keep_prob > 0.0:
267
+ random_tensor.div_(keep_prob)
268
+ output = x * random_tensor
269
+ return output
270
+
271
+
272
+ class DropPath(nn.Module):
273
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
274
+
275
+ def __init__(self, drop_prob=None):
276
+ super(DropPath, self).__init__()
277
+ self.drop_prob = drop_prob
278
+
279
+ def forward(self, x):
280
+ return drop_path(x, self.drop_prob, self.training)
281
+
282
+
283
+ class LayerScale(nn.Module):
284
+ def __init__(
285
+ self,
286
+ dim: int,
287
+ init_values: Union[float, torch.Tensor] = 1e-5,
288
+ inplace: bool = False,
289
+ ) -> None:
290
+ super().__init__()
291
+ self.inplace = inplace
292
+ self.grandma = nn.Parameter(init_values * torch.ones(dim))
293
+
294
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
295
+ return x.mul_(self.grandma) if self.inplace else x * self.grandma
296
+
297
+ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
298
+ # Huggingface is absurd and it will rename strings that contain `gamma`, which means that the normal DINO implementation
299
+ # of LayerScale won't work with HFHub. So we rename the variable to 'grandma', and support loading checkpoints in either
300
+ # format
301
+ key_a = f'{prefix}gamma'
302
+ key_b = f'{prefix}grandma'
303
+ if key_a in state_dict:
304
+ gamma = state_dict[key_a]
305
+ elif key_b in state_dict:
306
+ gamma = state_dict[key_b]
307
+ else:
308
+ if strict:
309
+ raise KeyError(f"Couldn't find the key {key_a} nor {key_b} in the state dict!")
310
+ else:
311
+ missing_keys.append(key_a)
312
+ missing_keys.append(key_b)
313
+ unexpected_keys.extend(state_dict.keys())
314
+ gamma = None
315
+
316
+ if gamma is not None:
317
+ self.grandma.data.copy_(gamma)
318
+
319
+ # return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
320
+
321
+
322
+ class Block(nn.Module):
323
+ def __init__(
324
+ self,
325
+ dim: int,
326
+ num_heads: int,
327
+ mlp_ratio: float = 4.0,
328
+ qkv_bias: bool = False,
329
+ proj_bias: bool = True,
330
+ ffn_bias: bool = True,
331
+ drop: float = 0.0,
332
+ attn_drop: float = 0.0,
333
+ init_values=None,
334
+ drop_path: float = 0.0,
335
+ act_layer: Callable[..., nn.Module] = nn.GELU,
336
+ norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
337
+ attn_class: Callable[..., nn.Module] = Attention,
338
+ ffn_layer: Callable[..., nn.Module] = Mlp,
339
+ ) -> None:
340
+ super().__init__()
341
+ # print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
342
+ self.norm1 = norm_layer(dim)
343
+ self.attn = attn_class(
344
+ dim,
345
+ num_heads=num_heads,
346
+ qkv_bias=qkv_bias,
347
+ proj_bias=proj_bias,
348
+ attn_drop=attn_drop,
349
+ proj_drop=drop,
350
+ )
351
+ self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
352
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
353
+
354
+ self.norm2 = norm_layer(dim)
355
+ mlp_hidden_dim = int(dim * mlp_ratio)
356
+ self.mlp = ffn_layer(
357
+ in_features=dim,
358
+ hidden_features=mlp_hidden_dim,
359
+ act_layer=act_layer,
360
+ drop=drop,
361
+ bias=ffn_bias,
362
+ )
363
+ self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
364
+ self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
365
+
366
+ self.sample_drop_ratio = drop_path
367
+
368
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
369
+ def attn_residual_func(x: torch.Tensor) -> torch.Tensor:
370
+ return self.ls1(self.attn(self.norm1(x)))
371
+
372
+ def ffn_residual_func(x: torch.Tensor) -> torch.Tensor:
373
+ return self.ls2(self.mlp(self.norm2(x)))
374
+
375
+ if self.training and self.sample_drop_ratio > 0.1:
376
+ # the overhead is compensated only for a drop path rate larger than 0.1
377
+ x = drop_add_residual_stochastic_depth(
378
+ x,
379
+ residual_func=attn_residual_func,
380
+ sample_drop_ratio=self.sample_drop_ratio,
381
+ )
382
+ x = drop_add_residual_stochastic_depth(
383
+ x,
384
+ residual_func=ffn_residual_func,
385
+ sample_drop_ratio=self.sample_drop_ratio,
386
+ )
387
+ elif self.training and self.sample_drop_ratio > 0.0:
388
+ x = x + self.drop_path1(attn_residual_func(x))
389
+ x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
390
+ else:
391
+ x = x + attn_residual_func(x)
392
+ x = x + ffn_residual_func(x)
393
+ return x
394
+
395
+
396
+ class NestedTensorBlock(Block):
397
+ def forward_nested(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]:
398
+ """
399
+ x_list contains a list of tensors to nest together and run
400
+ """
401
+ assert isinstance(self.attn, MemEffAttention)
402
+
403
+ if self.training and self.sample_drop_ratio > 0.0:
404
+
405
+ def attn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
406
+ return self.attn(self.norm1(x), attn_bias=attn_bias)
407
+
408
+ def ffn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
409
+ return self.mlp(self.norm2(x))
410
+
411
+ x_list = drop_add_residual_stochastic_depth_list(
412
+ x_list,
413
+ residual_func=attn_residual_func,
414
+ sample_drop_ratio=self.sample_drop_ratio,
415
+ scaling_vector=self.ls1.grandma if isinstance(self.ls1, LayerScale) else None,
416
+ )
417
+ x_list = drop_add_residual_stochastic_depth_list(
418
+ x_list,
419
+ residual_func=ffn_residual_func,
420
+ sample_drop_ratio=self.sample_drop_ratio,
421
+ scaling_vector=self.ls2.grandma if isinstance(self.ls1, LayerScale) else None,
422
+ )
423
+ return x_list
424
+ else:
425
+
426
+ def attn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
427
+ return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
428
+
429
+ def ffn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
430
+ return self.ls2(self.mlp(self.norm2(x)))
431
+
432
+ attn_bias, x = get_attn_bias_and_cat(x_list)
433
+ x = x + attn_residual_func(x, attn_bias=attn_bias)
434
+ x = x + ffn_residual_func(x)
435
+ return attn_bias.split(x)
436
+
437
+ def forward(self, x_or_x_list):
438
+ if isinstance(x_or_x_list, torch.Tensor):
439
+ return super().forward(x_or_x_list)
440
+ elif isinstance(x_or_x_list, list):
441
+ if not XFORMERS_AVAILABLE:
442
+ raise AssertionError("xFormers is required for using nested tensors")
443
+ return self.forward_nested(x_or_x_list)
444
+ else:
445
+ raise AssertionError
446
+
447
+
448
+ def drop_add_residual_stochastic_depth(
449
+ x: torch.Tensor,
450
+ residual_func: Callable[[torch.Tensor], torch.Tensor],
451
+ sample_drop_ratio: float = 0.0,
452
+ ) -> torch.Tensor:
453
+ # 1) extract subset using permutation
454
+ b, n, d = x.shape
455
+ sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
456
+ brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
457
+ x_subset = x[brange]
458
+
459
+ # 2) apply residual_func to get residual
460
+ residual = residual_func(x_subset)
461
+
462
+ x_flat = x.flatten(1)
463
+ residual = residual.flatten(1)
464
+
465
+ residual_scale_factor = b / sample_subset_size
466
+
467
+ # 3) add the residual
468
+ x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
469
+ return x_plus_residual.view_as(x)
470
+
471
+
472
+ def get_branges_scales(x, sample_drop_ratio=0.0):
473
+ b, n, d = x.shape
474
+ sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
475
+ brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
476
+ residual_scale_factor = b / sample_subset_size
477
+ return brange, residual_scale_factor
478
+
479
+
480
+ def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
481
+ if scaling_vector is None:
482
+ x_flat = x.flatten(1)
483
+ residual = residual.flatten(1)
484
+ x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
485
+ else:
486
+ x_plus_residual = scaled_index_add(
487
+ x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
488
+ )
489
+ return x_plus_residual
490
+
491
+
492
+ attn_bias_cache: Dict[Tuple, Any] = {}
493
+
494
+
495
+ def get_attn_bias_and_cat(x_list, branges=None):
496
+ """
497
+ this will perform the index select, cat the tensors, and provide the attn_bias from cache
498
+ """
499
+ batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
500
+ all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
501
+ if all_shapes not in attn_bias_cache.keys():
502
+ seqlens = []
503
+ for b, x in zip(batch_sizes, x_list):
504
+ for _ in range(b):
505
+ seqlens.append(x.shape[1])
506
+ attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
507
+ attn_bias._batch_sizes = batch_sizes
508
+ attn_bias_cache[all_shapes] = attn_bias
509
+
510
+ if branges is not None:
511
+ cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
512
+ else:
513
+ tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
514
+ cat_tensors = torch.cat(tensors_bs1, dim=1)
515
+
516
+ return attn_bias_cache[all_shapes], cat_tensors
517
+
518
+
519
+ def drop_add_residual_stochastic_depth_list(
520
+ x_list: List[torch.Tensor],
521
+ residual_func: Callable[[torch.Tensor, Any], torch.Tensor],
522
+ sample_drop_ratio: float = 0.0,
523
+ scaling_vector=None,
524
+ ) -> torch.Tensor:
525
+ # 1) generate random set of indices for dropping samples in the batch
526
+ branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
527
+ branges = [s[0] for s in branges_scales]
528
+ residual_scale_factors = [s[1] for s in branges_scales]
529
+
530
+ # 2) get attention bias and index+concat the tensors
531
+ attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
532
+
533
+ # 3) apply residual_func to get residual, and split the result
534
+ residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
535
+
536
+ outputs = []
537
+ for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
538
+ outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
539
+ return outputs
540
+
541
+
542
+ def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
543
+ if not depth_first and include_root:
544
+ fn(module=module, name=name)
545
+ for child_name, child_module in module.named_children():
546
+ child_name = ".".join((name, child_name)) if name else child_name
547
+ named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
548
+ if depth_first and include_root:
549
+ fn(module=module, name=name)
550
+ return module
551
+
552
+
553
+ class BlockChunk(nn.ModuleList):
554
+ def forward(self, x):
555
+ for b in self:
556
+ x = b(x)
557
+ return x
558
+
559
+
560
+ class DinoVisionTransformer(nn.Module):
561
+ def __init__(
562
+ self,
563
+ img_size=224,
564
+ patch_size=16,
565
+ in_chans=3,
566
+ embed_dim=768,
567
+ depth=12,
568
+ num_heads=12,
569
+ mlp_ratio=4.0,
570
+ qkv_bias=True,
571
+ ffn_bias=True,
572
+ proj_bias=True,
573
+ drop_path_rate=0.0,
574
+ drop_path_uniform=False,
575
+ init_values=None, # for layerscale: None or 0 => no layerscale
576
+ embed_layer=PatchEmbed,
577
+ act_layer=nn.GELU,
578
+ block_fn=Block,
579
+ ffn_layer="mlp",
580
+ block_chunks=1,
581
+ num_register_tokens=0,
582
+ interpolate_antialias=False,
583
+ interpolate_offset=0.1,
584
+ ):
585
+ """
586
+ Args:
587
+ img_size (int, tuple): input image size
588
+ patch_size (int, tuple): patch size
589
+ in_chans (int): number of input channels
590
+ embed_dim (int): embedding dimension
591
+ depth (int): depth of transformer
592
+ num_heads (int): number of attention heads
593
+ mlp_ratio (int): ratio of mlp hidden dim to embedding dim
594
+ qkv_bias (bool): enable bias for qkv if True
595
+ proj_bias (bool): enable bias for proj in attn if True
596
+ ffn_bias (bool): enable bias for ffn if True
597
+ drop_path_rate (float): stochastic depth rate
598
+ drop_path_uniform (bool): apply uniform drop rate across blocks
599
+ weight_init (str): weight init scheme
600
+ init_values (float): layer-scale init values
601
+ embed_layer (nn.Module): patch embedding layer
602
+ act_layer (nn.Module): MLP activation layer
603
+ block_fn (nn.Module): transformer block class
604
+ ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
605
+ block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
606
+ num_register_tokens: (int) number of extra cls tokens (so-called "registers")
607
+ interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
608
+ interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
609
+ """
610
+ super().__init__()
611
+ norm_layer = partial(nn.LayerNorm, eps=1e-6)
612
+
613
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
614
+ self.num_tokens = 1
615
+ self.n_blocks = depth
616
+ self.num_heads = num_heads
617
+ self.patch_size = patch_size
618
+ self.num_register_tokens = num_register_tokens
619
+ self.interpolate_antialias = interpolate_antialias
620
+ self.interpolate_offset = interpolate_offset
621
+
622
+ self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
623
+ num_patches = self.patch_embed.num_patches
624
+
625
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
626
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
627
+ assert num_register_tokens >= 0
628
+ self.register_tokens = (
629
+ nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
630
+ )
631
+
632
+ if drop_path_uniform is True:
633
+ dpr = [drop_path_rate] * depth
634
+ else:
635
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
636
+
637
+ if ffn_layer == "mlp":
638
+ ffn_layer = Mlp
639
+ elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
640
+ ffn_layer = SwiGLUFFNFused
641
+ elif ffn_layer == "identity":
642
+ def f(*args, **kwargs):
643
+ return nn.Identity()
644
+
645
+ ffn_layer = f
646
+ else:
647
+ raise NotImplementedError
648
+
649
+ blocks_list = [
650
+ block_fn(
651
+ dim=embed_dim,
652
+ num_heads=num_heads,
653
+ mlp_ratio=mlp_ratio,
654
+ qkv_bias=qkv_bias,
655
+ proj_bias=proj_bias,
656
+ ffn_bias=ffn_bias,
657
+ drop_path=dpr[i],
658
+ norm_layer=norm_layer,
659
+ act_layer=act_layer,
660
+ ffn_layer=ffn_layer,
661
+ init_values=init_values,
662
+ )
663
+ for i in range(depth)
664
+ ]
665
+ if block_chunks > 0:
666
+ self.chunked_blocks = True
667
+ chunked_blocks = []
668
+ chunksize = depth // block_chunks
669
+ for i in range(0, depth, chunksize):
670
+ # this is to keep the block index consistent if we chunk the block list
671
+ chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
672
+ self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
673
+ else:
674
+ self.chunked_blocks = False
675
+ self.blocks = nn.ModuleList(blocks_list)
676
+
677
+ self.norm = norm_layer(embed_dim)
678
+ self.head = nn.Identity()
679
+
680
+ self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
681
+
682
+ def interpolate_pos_encoding(self, x, w, h):
683
+ previous_dtype = x.dtype
684
+ npatch = x.shape[1] - 1
685
+ N = self.pos_embed.shape[1] - 1
686
+ if npatch == N and w == h:
687
+ return self.pos_embed
688
+ pos_embed = self.pos_embed.float()
689
+ class_pos_embed = pos_embed[:, 0]
690
+ patch_pos_embed = pos_embed[:, 1:]
691
+ dim = x.shape[-1]
692
+ w0 = w // self.patch_size
693
+ h0 = h // self.patch_size
694
+ M = int(math.sqrt(N)) # Recover the number of patches in each dimension
695
+ assert N == M * M
696
+ kwargs = {}
697
+ if self.interpolate_offset:
698
+ # Historical kludge: add a small number to avoid floating point error in the interpolation, see https://github.com/facebookresearch/dino/issues/8
699
+ # Note: still needed for backward-compatibility, the underlying operators are using both output size and scale factors
700
+ sx = float(w0 + self.interpolate_offset) / M
701
+ sy = float(h0 + self.interpolate_offset) / M
702
+ kwargs["scale_factor"] = (sx, sy)
703
+ else:
704
+ # Simply specify an output size instead of a scale factor
705
+ kwargs["size"] = (w0, h0)
706
+ patch_pos_embed = nn.functional.interpolate(
707
+ patch_pos_embed.reshape(1, M, M, dim).permute(0, 3, 1, 2),
708
+ mode="bicubic",
709
+ antialias=self.interpolate_antialias,
710
+ **kwargs,
711
+ )
712
+ assert (w0, h0) == patch_pos_embed.shape[-2:]
713
+ patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
714
+ return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
715
+
716
+ def prepare_tokens_with_masks(self, x, masks=None):
717
+ B, nc, w, h = x.shape
718
+ x = self.patch_embed(x)
719
+ if masks is not None:
720
+ x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
721
+
722
+ x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
723
+ x = x + self.interpolate_pos_encoding(x, w, h)
724
+
725
+ if self.register_tokens is not None:
726
+ x = torch.cat(
727
+ (
728
+ x[:, :1],
729
+ self.register_tokens.expand(x.shape[0], -1, -1),
730
+ x[:, 1:],
731
+ ),
732
+ dim=1,
733
+ )
734
+
735
+ return x
736
+
737
+ def forward_features_list(self, x_list, masks_list):
738
+ x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
739
+ for blk in self.blocks:
740
+ x = blk(x)
741
+
742
+ all_x = x
743
+ output = []
744
+ for x, masks in zip(all_x, masks_list):
745
+ x_norm = self.norm(x)
746
+ output.append(
747
+ {
748
+ "x_norm_clstoken": x_norm[:, 0],
749
+ "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
750
+ "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
751
+ "x_prenorm": x,
752
+ "masks": masks,
753
+ }
754
+ )
755
+ return output
756
+
757
+ def forward_features(self, x, masks=None):
758
+ if isinstance(x, list):
759
+ return self.forward_features_list(x, masks)
760
+
761
+ x = self.prepare_tokens_with_masks(x, masks)
762
+
763
+ for blk in self.blocks:
764
+ x = blk(x)
765
+
766
+ x_norm = self.norm(x)
767
+ return {
768
+ "x_norm_clstoken": x_norm[:, 0],
769
+ "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
770
+ "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
771
+ "x_prenorm": x,
772
+ "masks": masks,
773
+ }
774
+
775
+ def _get_intermediate_layers_not_chunked(self, x, n=1):
776
+ x = self.prepare_tokens_with_masks(x)
777
+ # If n is an int, take the n last blocks. If it's a list, take them
778
+ output, total_block_len = [], len(self.blocks)
779
+ blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
780
+ for i, blk in enumerate(self.blocks):
781
+ x = blk(x)
782
+ if i in blocks_to_take:
783
+ output.append(x)
784
+ assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
785
+ return output
786
+
787
+ def _get_intermediate_layers_chunked(self, x, n=1):
788
+ x = self.prepare_tokens_with_masks(x)
789
+ output, i, total_block_len = [], 0, len(self.blocks[-1])
790
+ # If n is an int, take the n last blocks. If it's a list, take them
791
+ blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
792
+ for block_chunk in self.blocks:
793
+ for blk in block_chunk[i:]: # Passing the nn.Identity()
794
+ x = blk(x)
795
+ if i in blocks_to_take:
796
+ output.append(x)
797
+ i += 1
798
+ assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
799
+ return output
800
+
801
+ def get_intermediate_layers(
802
+ self,
803
+ x: torch.Tensor,
804
+ n: Union[int, Sequence] = 1, # Layers or n last layers to take
805
+ reshape: bool = False,
806
+ return_class_token: bool = False,
807
+ norm=True,
808
+ ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
809
+ if self.chunked_blocks:
810
+ outputs = self._get_intermediate_layers_chunked(x, n)
811
+ else:
812
+ outputs = self._get_intermediate_layers_not_chunked(x, n)
813
+ if norm:
814
+ outputs = [self.norm(out) for out in outputs]
815
+ class_tokens = [out[:, 0] for out in outputs]
816
+ outputs = [out[:, 1 + self.num_register_tokens :] for out in outputs]
817
+ if reshape:
818
+ B, _, w, h = x.shape
819
+ outputs = [
820
+ out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
821
+ for out in outputs
822
+ ]
823
+ if return_class_token:
824
+ return tuple(zip(outputs, class_tokens))
825
+ return tuple(outputs)
826
+
827
+ def forward(self, *args, is_training=False, **kwargs):
828
+ ret = self.forward_features(*args, **kwargs)
829
+ if is_training:
830
+ return ret
831
+ else:
832
+ return self.head(ret["x_norm_clstoken"])
833
+
834
+
835
+ def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
836
+ model = DinoVisionTransformer(
837
+ patch_size=patch_size,
838
+ embed_dim=384,
839
+ depth=12,
840
+ num_heads=6,
841
+ mlp_ratio=4,
842
+ block_fn=partial(Block, attn_class=MemEffAttention),
843
+ num_register_tokens=num_register_tokens,
844
+ **kwargs,
845
+ )
846
+ return model
847
+
848
+
849
+ def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
850
+ model = DinoVisionTransformer(
851
+ patch_size=patch_size,
852
+ embed_dim=768,
853
+ depth=12,
854
+ num_heads=12,
855
+ mlp_ratio=4,
856
+ block_fn=partial(Block, attn_class=MemEffAttention),
857
+ num_register_tokens=num_register_tokens,
858
+ **kwargs,
859
+ )
860
+ return model
861
+
862
+
863
+ def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
864
+ model = DinoVisionTransformer(
865
+ patch_size=patch_size,
866
+ embed_dim=1024,
867
+ depth=24,
868
+ num_heads=16,
869
+ mlp_ratio=4,
870
+ block_fn=partial(Block, attn_class=MemEffAttention),
871
+ num_register_tokens=num_register_tokens,
872
+ **kwargs,
873
+ )
874
+ return model
875
+
876
+
877
+ def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
878
+ """
879
+ Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
880
+ """
881
+ model = DinoVisionTransformer(
882
+ patch_size=patch_size,
883
+ embed_dim=1536,
884
+ depth=40,
885
+ num_heads=24,
886
+ mlp_ratio=4,
887
+ block_fn=partial(Block, attn_class=MemEffAttention),
888
+ num_register_tokens=num_register_tokens,
889
+ **kwargs,
890
+ )
891
+ return model
892
+
893
+
894
+ class Weights(Enum):
895
+ LVD142M = "LVD142M"
896
+
897
+
898
+ def _make_dinov2_model(
899
+ *,
900
+ arch_name: str = "vit_large",
901
+ img_size: int = 518,
902
+ patch_size: int = 14,
903
+ init_values: float = 1.0,
904
+ ffn_layer: str = "mlp",
905
+ block_chunks: int = 0,
906
+ num_register_tokens: int = 0,
907
+ interpolate_antialias: bool = False,
908
+ interpolate_offset: float = 0.1,
909
+ weights: Union[Weights, str] = Weights.LVD142M,
910
+ **kwargs,
911
+ ):
912
+ if isinstance(weights, str):
913
+ try:
914
+ weights = Weights[weights]
915
+ except KeyError:
916
+ raise AssertionError(f"Unsupported weights: {weights}")
917
+
918
+ vit_kwargs = dict(
919
+ img_size=img_size,
920
+ patch_size=patch_size,
921
+ init_values=init_values,
922
+ ffn_layer=ffn_layer,
923
+ block_chunks=block_chunks,
924
+ num_register_tokens=num_register_tokens,
925
+ interpolate_antialias=interpolate_antialias,
926
+ interpolate_offset=interpolate_offset,
927
+ )
928
+ vit_kwargs.update(**kwargs)
929
+ model = sys.modules[__name__].__dict__[arch_name](**vit_kwargs)
930
+
931
+ return model
932
+
933
+
934
+ def dinov2_vits14(**kwargs):
935
+ """
936
+ DINOv2 ViT-S/14 model (optionally) pretrained on the LVD-142M dataset.
937
+ """
938
+ return _make_dinov2_model(arch_name="vit_small", **kwargs)
939
+
940
+
941
+ def dinov2_vitb14(**kwargs):
942
+ """
943
+ DINOv2 ViT-B/14 model (optionally) pretrained on the LVD-142M dataset.
944
+ """
945
+ return _make_dinov2_model(arch_name="vit_base", **kwargs)
946
+
947
+
948
+ def dinov2_vitl14(**kwargs):
949
+ """
950
+ DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset.
951
+ """
952
+ return _make_dinov2_model(arch_name="vit_large", **kwargs)
953
+
954
+
955
+ def dinov2_vitg14(**kwargs):
956
+ """
957
+ DINOv2 ViT-g/14 model (optionally) pretrained on the LVD-142M dataset.
958
+ """
959
+ return _make_dinov2_model(
960
+ arch_name="vit_giant2",
961
+ ffn_layer="swiglufused",
962
+ **kwargs,
963
+ )
964
+
965
+
966
+ def dinov2_vits14_reg(**kwargs):
967
+ """
968
+ DINOv2 ViT-S/14 model with registers (optionally) pretrained on the LVD-142M dataset.
969
+ """
970
+ return _make_dinov2_model(
971
+ arch_name="vit_small",
972
+ num_register_tokens=4,
973
+ interpolate_antialias=True,
974
+ interpolate_offset=0.0,
975
+ **kwargs,
976
+ )
977
+
978
+
979
+ def dinov2_vitb14_reg(**kwargs):
980
+ """
981
+ DINOv2 ViT-B/14 model with registers (optionally) pretrained on the LVD-142M dataset.
982
+ """
983
+ return _make_dinov2_model(
984
+ arch_name="vit_base",
985
+ num_register_tokens=4,
986
+ interpolate_antialias=True,
987
+ interpolate_offset=0.0,
988
+ **kwargs,
989
+ )
990
+
991
+
992
+ def dinov2_vitl14_reg(**kwargs):
993
+ """
994
+ DINOv2 ViT-L/14 model with registers (optionally) pretrained on the LVD-142M dataset.
995
+ """
996
+ return _make_dinov2_model(
997
+ arch_name="vit_large",
998
+ num_register_tokens=4,
999
+ interpolate_antialias=True,
1000
+ interpolate_offset=0.0,
1001
+ **kwargs,
1002
+ )
1003
+
1004
+
1005
+ def dinov2_vitg14_reg(**kwargs):
1006
+ """
1007
+ DINOv2 ViT-g/14 model with registers (optionally) pretrained on the LVD-142M dataset.
1008
+ """
1009
+ return _make_dinov2_model(
1010
+ arch_name="vit_giant2",
1011
+ ffn_layer="swiglufused",
1012
+ num_register_tokens=4,
1013
+ interpolate_antialias=True,
1014
+ interpolate_offset=0.0,
1015
+ **kwargs,
1016
+ )
enable_spectral_reparam.py CHANGED
@@ -9,7 +9,7 @@
9
  from logging import getLogger
10
  import math
11
  import os
12
- from typing import List, Union, Tuple
13
  from types import MethodType
14
 
15
  import torch
@@ -136,18 +136,28 @@ def enable_spectral_reparam(model: Union[nn.Module, List[nn.Module]],
136
  eps: float = 1e-6,
137
  init_norm_to_current: bool = False,
138
  renorm_values: bool = True,
139
- renorm_mlp: bool = True):
 
140
  if isinstance(model, (list, tuple)):
141
- for sub in model:
 
142
  enable_spectral_reparam(sub, n_power_iterations=n_power_iterations, eps=eps,
143
  init_norm_to_current=init_norm_to_current, renorm_values=renorm_values,
144
- renorm_mlp=renorm_mlp)
145
  return
146
 
147
  print('Enabling spectral reparametrization')
148
  args = dict(n_power_iterations=n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current)
149
  visited_prefixes = set()
150
 
 
 
 
 
 
 
 
 
151
  def parametrize_linear(linear: nn.Linear):
152
  parametrize.register_parametrization(
153
  linear,
@@ -161,36 +171,40 @@ def enable_spectral_reparam(model: Union[nn.Module, List[nn.Module]],
161
  continue
162
 
163
  if isinstance(mod, Attention) or name.endswith('.attn'):
164
- parametrize.register_parametrization(
165
- mod.qkv,
166
- 'weight',
167
- _AttnSNReweight(mod.qkv.weight, renorm_values=renorm_values, **args),
168
- )
169
- if hasattr(mod, 'proj'):
 
170
  parametrize_linear(mod.proj)
171
  visited_prefixes.add(name)
172
  elif name.endswith('mlp') and renorm_mlp and hasattr(mod, 'w12'):
173
- parametrize.register_parametrization(
174
- mod.w12,
175
- 'weight',
176
- _ChunkedSNReweight(mod.w12.weight, num_chunks=2, **args),
177
- )
178
- parametrize_linear(mod.w3)
 
 
179
  visited_prefixes.add(name)
180
- elif isinstance(mod, nn.Linear) and 'patch_generator' not in name:
181
  parametrize_linear(mod)
182
 
183
 
184
- def configure_spectral_reparam_from_args(model: nn.Module, args):
185
  spectral_reparam = getattr(args, 'spectral_reparam', False)
186
  if isinstance(spectral_reparam, bool) and spectral_reparam:
187
- enable_spectral_reparam(model, init_norm_to_current=True)
188
  elif isinstance(spectral_reparam, dict):
189
  enable_spectral_reparam(
190
  model,
191
  n_power_iterations=spectral_reparam.get('n_power_iterations', 1),
192
  eps=spectral_reparam.get('eps', 1e-12),
193
  init_norm_to_current=True,
 
194
  )
195
 
196
 
 
9
  from logging import getLogger
10
  import math
11
  import os
12
+ from typing import Dict, List, Optional, Union, Tuple
13
  from types import MethodType
14
 
15
  import torch
 
136
  eps: float = 1e-6,
137
  init_norm_to_current: bool = False,
138
  renorm_values: bool = True,
139
+ renorm_mlp: bool = True,
140
+ state_dict_guidance: Optional[Dict[str, torch.Tensor]] = None):
141
  if isinstance(model, (list, tuple)):
142
+ for i, sub in enumerate(model):
143
+ sub_sd = state_dict_guidance[i] if isinstance(state_dict_guidance, (list, tuple)) else state_dict_guidance
144
  enable_spectral_reparam(sub, n_power_iterations=n_power_iterations, eps=eps,
145
  init_norm_to_current=init_norm_to_current, renorm_values=renorm_values,
146
+ renorm_mlp=renorm_mlp, state_dict_guidance=sub_sd)
147
  return
148
 
149
  print('Enabling spectral reparametrization')
150
  args = dict(n_power_iterations=n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current)
151
  visited_prefixes = set()
152
 
153
+ def is_guidance_parametrized(name: str):
154
+ if state_dict_guidance is None:
155
+ return True
156
+
157
+ p_name = f'{name}.parametrizations'
158
+ is_prm = any(k for k in state_dict_guidance if k.startswith(p_name))
159
+ return is_prm
160
+
161
  def parametrize_linear(linear: nn.Linear):
162
  parametrize.register_parametrization(
163
  linear,
 
171
  continue
172
 
173
  if isinstance(mod, Attention) or name.endswith('.attn'):
174
+ if is_guidance_parametrized(f'{name}.qkv'):
175
+ parametrize.register_parametrization(
176
+ mod.qkv,
177
+ 'weight',
178
+ _AttnSNReweight(mod.qkv.weight, renorm_values=renorm_values, **args),
179
+ )
180
+ if hasattr(mod, 'proj') and is_guidance_parametrized(f'{name}.proj'):
181
  parametrize_linear(mod.proj)
182
  visited_prefixes.add(name)
183
  elif name.endswith('mlp') and renorm_mlp and hasattr(mod, 'w12'):
184
+ if is_guidance_parametrized(f'{name}.w12'):
185
+ parametrize.register_parametrization(
186
+ mod.w12,
187
+ 'weight',
188
+ _ChunkedSNReweight(mod.w12.weight, num_chunks=2, **args),
189
+ )
190
+ if is_guidance_parametrized(f'{name}.w3'):
191
+ parametrize_linear(mod.w3)
192
  visited_prefixes.add(name)
193
+ elif isinstance(mod, nn.Linear) and 'patch_generator' not in name and is_guidance_parametrized(name):
194
  parametrize_linear(mod)
195
 
196
 
197
+ def configure_spectral_reparam_from_args(model: nn.Module, args, state_dict_guidance: Optional[Dict[str, torch.Tensor]] = None):
198
  spectral_reparam = getattr(args, 'spectral_reparam', False)
199
  if isinstance(spectral_reparam, bool) and spectral_reparam:
200
+ enable_spectral_reparam(model, init_norm_to_current=True, state_dict_guidance=state_dict_guidance)
201
  elif isinstance(spectral_reparam, dict):
202
  enable_spectral_reparam(
203
  model,
204
  n_power_iterations=spectral_reparam.get('n_power_iterations', 1),
205
  eps=spectral_reparam.get('eps', 1e-12),
206
  init_norm_to_current=True,
207
+ state_dict_guidance=state_dict_guidance,
208
  )
209
 
210
 
extra_models.py CHANGED
@@ -1,13 +1,19 @@
1
  from distutils.version import LooseVersion
 
2
  from typing import List, Optional, Tuple, Union
3
  import warnings
4
 
5
  import torch
6
  from torch import nn
 
7
 
8
  from timm.models.registry import register_model
 
9
 
10
  from .forward_intermediates import forward_intermediates
 
 
 
11
 
12
 
13
  class PaliGemmaWrapper(nn.Module):
@@ -74,17 +80,38 @@ def paligemma_896_student(**kwargs):
74
  return model
75
 
76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  def _load_dino_v2(dino_v2_model, cache_dir: Optional[str] = None, pretrained=True, **kwargs):
78
  if cache_dir:
79
  torch.hub.set_dir(cache_dir)
80
- model = torch.hub.load(
81
  'facebookresearch/dinov2',
82
  dino_v2_model,
83
  pretrained=pretrained,
84
  # **kwargs,
85
  )
86
- return model
87
 
 
 
 
 
 
 
88
 
89
  class DinoWrapper(nn.Module):
90
  def __init__(self, dino_model: nn.Module):
@@ -151,9 +178,29 @@ class DinoWrapper(nn.Module):
151
  )
152
 
153
 
154
- @register_model
155
- def dino_v2_g_student(**kwargs):
156
- model = _load_dino_v2('dinov2_vitg14_reg', pretrained=False)
 
 
 
157
  model = DinoWrapper(model)
158
 
 
 
 
 
 
 
 
 
159
  return model
 
 
 
 
 
 
 
 
 
 
1
  from distutils.version import LooseVersion
2
+ from types import MethodType
3
  from typing import List, Optional, Tuple, Union
4
  import warnings
5
 
6
  import torch
7
  from torch import nn
8
+ import torch.nn.functional as F
9
 
10
  from timm.models.registry import register_model
11
+ from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
12
 
13
  from .forward_intermediates import forward_intermediates
14
+ from .input_conditioner import InputConditioner
15
+
16
+ _has_torch_sdpa = hasattr(F, 'scaled_dot_product_attention')
17
 
18
 
19
  class PaliGemmaWrapper(nn.Module):
 
80
  return model
81
 
82
 
83
+ def dv2_sdpa(self, x: torch.Tensor) -> torch.Tensor:
84
+ B, N, C = x.shape
85
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
86
+
87
+ q, k, v = qkv[0], qkv[1], qkv[2]
88
+ x = F.scaled_dot_product_attention(
89
+ q, k, v,
90
+ is_causal=False,
91
+ dropout_p=self.attn_drop.p if self.training else 0.,
92
+ scale=self.scale,
93
+ )
94
+ x = x.transpose(1, 2).reshape(B, N, C)
95
+ x = self.proj(x)
96
+ x = self.proj_drop(x)
97
+ return x
98
+
99
  def _load_dino_v2(dino_v2_model, cache_dir: Optional[str] = None, pretrained=True, **kwargs):
100
  if cache_dir:
101
  torch.hub.set_dir(cache_dir)
102
+ model: nn.Module = torch.hub.load(
103
  'facebookresearch/dinov2',
104
  dino_v2_model,
105
  pretrained=pretrained,
106
  # **kwargs,
107
  )
 
108
 
109
+ if _has_torch_sdpa:
110
+ for n, m in model.named_modules():
111
+ if n.endswith('.attn'):
112
+ m.forward = MethodType(dv2_sdpa, m)
113
+
114
+ return model
115
 
116
  class DinoWrapper(nn.Module):
117
  def __init__(self, dino_model: nn.Module):
 
178
  )
179
 
180
 
181
+ def _dino_student(arch: str, **kwargs):
182
+ from . import dinov2_arch
183
+
184
+ factory = getattr(dinov2_arch, arch)
185
+ model = factory()
186
+
187
  model = DinoWrapper(model)
188
 
189
+ conditioner = InputConditioner(
190
+ input_scale=1.0,
191
+ norm_mean=IMAGENET_DEFAULT_MEAN,
192
+ norm_std=IMAGENET_DEFAULT_STD,
193
+ )
194
+
195
+ model.input_conditioner = conditioner
196
+
197
  return model
198
+
199
+
200
+ @register_model
201
+ def dino_v2_l_student(**kwargs):
202
+ return _dino_student('dinov2_vitl14_reg', **kwargs)
203
+
204
+ @register_model
205
+ def dino_v2_g_student(**kwargs):
206
+ return _dino_student('dinov2_vitg14_reg', **kwargs)
hf_model.py CHANGED
@@ -28,6 +28,7 @@ from .adaptor_generic import GenericAdaptor, AdaptorBase
28
  from .adaptor_mlp import create_mlp_from_config
29
  from .adaptor_registry import adaptor_registry
30
  from .cls_token import ClsToken
 
31
  from .enable_cpe_support import enable_cpe
32
  from .enable_spectral_reparam import configure_spectral_reparam_from_args
33
  from .eradio_model import eradio
@@ -41,8 +42,8 @@ from .vit_patch_generator import ViTPatchGenerator
41
  from .vitdet import apply_vitdet_arch, VitDetArgs
42
 
43
  # Register extra models
44
- from .extra_models import *
45
  from .extra_timm_models import *
 
46
 
47
 
48
 
@@ -59,6 +60,8 @@ def rename_all_gamma_to_weight_with_proxy(module):
59
  # Generate the new name by replacing 'gamma' with 'weight'
60
  new_name = param_name.replace('gamma', 'weight')
61
 
 
 
62
  # Remove the old parameter and assign it with the new name
63
  delattr(submodule, param_name)
64
  setattr(submodule, new_name, nn.Parameter(param.data))
 
28
  from .adaptor_mlp import create_mlp_from_config
29
  from .adaptor_registry import adaptor_registry
30
  from .cls_token import ClsToken
31
+ from .dinov2_arch import dinov2_vitg14_reg
32
  from .enable_cpe_support import enable_cpe
33
  from .enable_spectral_reparam import configure_spectral_reparam_from_args
34
  from .eradio_model import eradio
 
42
  from .vitdet import apply_vitdet_arch, VitDetArgs
43
 
44
  # Register extra models
 
45
  from .extra_timm_models import *
46
+ from .extra_models import *
47
 
48
 
49
 
 
60
  # Generate the new name by replacing 'gamma' with 'weight'
61
  new_name = param_name.replace('gamma', 'weight')
62
 
63
+ print("In submodule {}: Renaming '{}' to '{}'".format(submodule_name, param_name, new_name))
64
+
65
  # Remove the old parameter and assign it with the new name
66
  delattr(submodule, param_name)
67
  setattr(submodule, new_name, nn.Parameter(param.data))
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:18af0e8c31cf4e60fda116e733695fc3eda57b1f52448bcadace919f4a305982
3
- size 2823054704
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7929c4c70895835ec06dd15d69f36f4f1d77973964ecac445eb96db1d0add7f3
3
+ size 2606616136
radio_model.py CHANGED
@@ -145,7 +145,14 @@ class RADIOModel(nn.Module):
145
  if fn is not None:
146
  fn()
147
 
148
- def forward(self, x: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
 
 
 
 
 
 
 
149
  res_step = self.min_resolution_step
150
  if res_step is not None and (x.shape[-2] % res_step != 0 or x.shape[-1] % res_step != 0):
151
  raise ValueError('The input resolution must be a multiple of `self.min_resolution_step`. '
@@ -154,10 +161,10 @@ class RADIOModel(nn.Module):
154
 
155
  x = self.input_conditioner(x)
156
  y = self.model.forward_features(x)
157
- ret = self._extract_final(x, y)
158
  return ret
159
 
160
- def _extract_final(self, x: torch.Tensor, y: torch.Tensor):
161
  if isinstance(self.model, VisionTransformer):
162
  patch_gen = getattr(self.model, "patch_generator", None)
163
  if patch_gen is not None:
@@ -194,11 +201,19 @@ class RADIOModel(nn.Module):
194
  bb_summary = all_summary
195
  all_feat = y[:, self.num_summary_tokens:]
196
 
197
- all_feat = all_feat.float()
198
-
199
  all_feat = self.feature_normalizer(all_feat)
200
 
201
- ret = RadioOutput(bb_summary.flatten(1), all_feat).to(torch.float32)
 
 
 
 
 
 
 
 
 
 
202
  if self.adaptors:
203
  ret = dict(backbone=ret)
204
  for name, adaptor in self.adaptors.items():
@@ -206,7 +221,7 @@ class RADIOModel(nn.Module):
206
  summary = all_summary[:, adaptor.head_idx]
207
  else:
208
  summary = all_summary
209
- ada_input = AdaptorInput(images=x, summary=summary.float(), features=all_feat)
210
  v = adaptor(ada_input).to(torch.float32)
211
  ret[name] = v
212
 
@@ -275,7 +290,7 @@ class RADIOModel(nn.Module):
275
  if intermediates_only:
276
  return radio_outputs
277
  else:
278
- final = self._extract_final(x, final)
279
  return final, radio_outputs
280
 
281
 
@@ -325,7 +340,4 @@ def create_model_from_args(args) -> nn.Module:
325
  num_registers=getattr(args, 'cpe_num_registers', None),
326
  )
327
 
328
- if args.spectral_reparam:
329
- configure_spectral_reparam_from_args(model, args)
330
-
331
  return model
 
145
  if fn is not None:
146
  fn()
147
 
148
+ def forward(self, x: torch.Tensor, feature_fmt: str = 'NLC') -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
149
+ '''
150
+ Forward process for model.
151
+ Args:
152
+ x: Input tensor. Unless `make_preprocessor_external` has been called, then the dynamic range of `x` is expected to be `[0, 1]`,
153
+ otherwise `x` is expected to be mean centered with unit standard deviation.
154
+ feature_format: ['NLC', 'NCHW'] - The output format for the features.
155
+ '''
156
  res_step = self.min_resolution_step
157
  if res_step is not None and (x.shape[-2] % res_step != 0 or x.shape[-1] % res_step != 0):
158
  raise ValueError('The input resolution must be a multiple of `self.min_resolution_step`. '
 
161
 
162
  x = self.input_conditioner(x)
163
  y = self.model.forward_features(x)
164
+ ret = self._extract_final(x, y, feature_fmt=feature_fmt)
165
  return ret
166
 
167
+ def _extract_final(self, x: torch.Tensor, y: torch.Tensor, feature_fmt: str = 'NLC'):
168
  if isinstance(self.model, VisionTransformer):
169
  patch_gen = getattr(self.model, "patch_generator", None)
170
  if patch_gen is not None:
 
201
  bb_summary = all_summary
202
  all_feat = y[:, self.num_summary_tokens:]
203
 
 
 
204
  all_feat = self.feature_normalizer(all_feat)
205
 
206
+ if feature_fmt == 'NCHW':
207
+ fmt_feat = (all_feat.reshape(all_feat.shape[0], x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size, all_feat.shape[2])
208
+ .permute(0, 3, 1, 2)
209
+ )
210
+ elif feature_fmt == 'NLC':
211
+ fmt_feat = all_feat
212
+ else:
213
+ raise ValueError(f'Unsupported feature_fmt: {feature_fmt}. Must be one of ["NLC", "NCHW"]')
214
+
215
+ ret = RadioOutput(bb_summary.flatten(1), fmt_feat)
216
+
217
  if self.adaptors:
218
  ret = dict(backbone=ret)
219
  for name, adaptor in self.adaptors.items():
 
221
  summary = all_summary[:, adaptor.head_idx]
222
  else:
223
  summary = all_summary
224
+ ada_input = AdaptorInput(images=x, summary=summary.float(), features=all_feat, feature_fmt=feature_fmt, patch_size=self.patch_size)
225
  v = adaptor(ada_input).to(torch.float32)
226
  ret[name] = v
227
 
 
290
  if intermediates_only:
291
  return radio_outputs
292
  else:
293
+ final = self._extract_final(x, final, feature_fmt=output_fmt)
294
  return final, radio_outputs
295
 
296
 
 
340
  num_registers=getattr(args, 'cpe_num_registers', None),
341
  )
342
 
 
 
 
343
  return model