gheinrich commited on
Commit
d3b8c8f
1 Parent(s): d5e1727

Upload model

Browse files
README.md CHANGED
@@ -1,3 +1,6 @@
 
 
 
1
  # AM-RADIO: Reduce All Domains Into One
2
 
3
  Mike Ranzinger, Greg Heinrich, Jan Kautz, Pavlo Molchanov
 
1
+ ---
2
+ {}
3
+ ---
4
  # AM-RADIO: Reduce All Domains Into One
5
 
6
  Mike Ranzinger, Greg Heinrich, Jan Kautz, Pavlo Molchanov
adaptor_base.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from argparse import Namespace
9
+ from typing import NamedTuple
10
+
11
+ import torch
12
+ from torch import nn
13
+ import torch.nn.functional as F
14
+
15
+
16
+ class AdaptorInput(NamedTuple):
17
+ images: torch.Tensor
18
+ summary: torch.Tensor
19
+ features: torch.Tensor
20
+
21
+
22
+ class RadioOutput(NamedTuple):
23
+ summary: torch.Tensor
24
+ features: torch.Tensor
25
+
26
+ def to(self, *args, **kwargs):
27
+ return RadioOutput(
28
+ self.summary.to(*args, **kwargs) if self.summary is not None else None,
29
+ self.features.to(*args, **kwargs) if self.features is not None else None,
30
+ )
31
+
32
+
33
+ class AdaptorBase(nn.Module):
34
+ def forward(self, input: AdaptorInput) -> RadioOutput:
35
+ raise NotImplementedError("Subclasses must implement this!")
cls_token.py CHANGED
@@ -1,4 +1,4 @@
1
- # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
2
  #
3
  # NVIDIA CORPORATION and its licensors retain all intellectual property
4
  # and proprietary rights in and to this software, related documentation
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
  #
3
  # NVIDIA CORPORATION and its licensors retain all intellectual property
4
  # and proprietary rights in and to this software, related documentation
common.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ from dataclasses import dataclass
10
+
11
+ from .radio_model import Resolution
12
+
13
+
14
+ @dataclass
15
+ class RadioResource:
16
+ url: str
17
+ patch_size: int
18
+ max_resolution: int
19
+ preferred_resolution: Resolution
20
+
21
+
22
+ RESOURCE_MAP = {
23
+ # RADIO
24
+ "radio_v2.1": RadioResource(
25
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.1_bf16.pth.tar?download=true",
26
+ patch_size=16,
27
+ max_resolution=2048,
28
+ preferred_resolution=Resolution(432, 432),
29
+ ),
30
+ "radio_v2": RadioResource(
31
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.pth.tar?download=true",
32
+ patch_size=16,
33
+ max_resolution=2048,
34
+ preferred_resolution=Resolution(432, 432),
35
+ ),
36
+ "radio_v1": RadioResource(
37
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v1.pth.tar?download=true",
38
+ patch_size=14,
39
+ max_resolution=1050,
40
+ preferred_resolution=Resolution(378, 378),
41
+ ),
42
+ # E-RADIO
43
+ "e-radio_v2": RadioResource(
44
+ "https://huggingface.co/nvidia/RADIO/resolve/main/eradio_v2.pth.tar?download=true",
45
+ patch_size=16,
46
+ max_resolution=2048,
47
+ preferred_resolution=Resolution(512, 512),
48
+ ),
49
+ }
50
+
51
+ DEFAULT_VERSION = "radio_v2.1"
config.json CHANGED
@@ -1,21 +1,23 @@
1
  {
 
2
  "architectures": [
3
  "RADIOModel"
4
  ],
5
  "args": {
6
  "aa": null,
7
- "amp": true,
8
- "amp_dtype": "bfloat16",
9
  "amp_impl": "native",
10
  "aug_repeats": 0,
11
  "aug_splits": 0,
12
- "auto_loss_balance_mode": "adaloss",
13
  "batch_size": 32,
14
  "bn_eps": null,
15
  "bn_momentum": null,
16
  "cache_dir": null,
17
  "channels_last": false,
18
  "checkpoint_hist": 10,
 
19
  "class_map": "",
20
  "clip_grad": null,
21
  "clip_mode": "norm",
@@ -24,13 +26,22 @@
24
  "coco_image_dir": "/datasets/coco2017-adlsa/val2017",
25
  "color_jitter": 0.4,
26
  "cooldown_epochs": 0,
27
- "cpe_max_size": 1050,
28
  "crd_loss": false,
29
  "crd_loss_weight": 0.8,
30
  "crop_pct": null,
31
  "cutmix": 0.0,
32
  "cutmix_minmax": null,
33
- "data_dir": "/lustre/fsw/portfolios/llmservice/projects/llmservice_nlp_fm/datasets/captioning/datacomp/dc1b/stage2",
 
 
 
 
 
 
 
 
 
34
  "dataset": "nvgpt4",
35
  "dataset_download": false,
36
  "debug_full_knn": false,
@@ -48,8 +59,9 @@
48
  "drop_block": null,
49
  "drop_connect": null,
50
  "drop_path": null,
 
51
  "epoch_repeats": 0.0,
52
- "epochs": 300,
53
  "eval": false,
54
  "eval_metric": "knn_top1",
55
  "eval_teacher": false,
@@ -59,8 +71,10 @@
59
  "fast_norm": false,
60
  "feature_summarizer": "cls_token",
61
  "feature_upscale_factor": null,
 
 
62
  "fuser": "",
63
- "gp": "avg",
64
  "grad_accum_steps": 1,
65
  "grad_checkpointing": false,
66
  "head_init_bias": null,
@@ -90,6 +104,10 @@
90
  "lr_noise_pct": 0.67,
91
  "lr_noise_std": 1.0,
92
  "mean": null,
 
 
 
 
93
  "min_lr": 0,
94
  "mixup": 0.0,
95
  "mixup_mode": "batch",
@@ -99,22 +117,32 @@
99
  "mlp_hidden_size": 1520,
100
  "mlp_num_inner": 3,
101
  "mlp_version": "v2",
102
- "model": "vit_huge_patch14_224",
103
- "model_ema": false,
104
- "model_ema_decay": 0.9998,
105
- "model_ema_force_cpu": false,
 
 
 
 
 
 
 
106
  "model_kwargs": {},
 
107
  "momentum": 0.9,
108
  "no_aug": false,
109
  "no_ddp_bb": false,
110
  "no_prefetcher": false,
111
  "no_resume_opt": false,
112
  "num_classes": null,
113
- "opt": "fusedlamb",
114
  "opt_betas": null,
115
  "opt_eps": null,
116
- "opt_kwargs": {},
117
- "output": "/lustre/fs6/portfolios/llmservice/users/mranzinger/output/evfm/dfn_oai/11-29-23_vit-h-14-cpe_dfn-oai-dino_maxres",
 
 
118
  "patience_epochs": 10,
119
  "pin_mem": false,
120
  "prefetcher": true,
@@ -126,11 +154,11 @@
126
  ],
127
  "recount": 1,
128
  "recovery_interval": 0,
129
- "register_multiple": 8,
130
  "remode": "pixel",
131
  "reprob": 0.0,
132
  "resplit": false,
133
- "resume": "/lustre/fs6/portfolios/llmservice/users/mranzinger/output/evfm/dfn_oai/11-29-23_vit-h-14-cpe_dfn-oai-dino_maxres/checkpoints/last.pth.tar",
134
  "save_images": false,
135
  "scale": [
136
  0.5,
@@ -140,26 +168,40 @@
140
  "sched_on_updates": true,
141
  "seed": 42,
142
  "smoothing": 0.1,
 
143
  "split_bn": false,
144
  "start_epoch": null,
145
  "std": null,
146
  "steps_per_epoch": 2000,
147
  "sync_bn": false,
148
- "synchronize_step": false,
149
  "teachers": [
150
  {
151
  "amp": true,
152
  "amp_dtype": "bfloat16",
153
  "batch_size": 16,
 
 
 
 
 
 
 
 
 
 
154
  "fd_loss_weight": 1.0,
155
  "fd_normalize": false,
156
  "feature_distillation": true,
157
  "input_size": 378,
 
158
  "model": "ViT-H-14-378-quickgelu",
159
  "name": "clip",
160
  "pretrained": "dfn5b",
161
  "sample_rate": 16,
 
162
  "summary_loss_weight": 1.0,
 
163
  "type": "open_clip",
164
  "vitdet_prob": 0.05,
165
  "vitdet_window_sizes": [
@@ -177,11 +219,13 @@
177
  "fd_normalize": false,
178
  "feature_distillation": true,
179
  "input_size": 336,
 
180
  "model": "ViT-L/14@336px",
181
  "name": "openai_clip",
182
  "pretrained": "openai",
183
  "sample_rate": 16,
184
  "summary_loss_weight": 0.8,
 
185
  "type": "openai_clip",
186
  "use_summary": false
187
  },
@@ -189,15 +233,87 @@
189
  "amp": true,
190
  "amp_dtype": "bfloat16",
191
  "batch_size": 16,
192
- "fd_loss_weight": 1.0,
193
  "fd_normalize": false,
194
  "feature_distillation": true,
195
- "input_size": 224,
196
- "model": "dinov2_vitg14",
197
  "name": "dino_v2",
198
  "sample_rate": 16,
199
  "summary_loss_weight": 1.0,
 
200
  "type": "dino_v2"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
  }
202
  ],
203
  "torchcompile": null,
@@ -208,30 +324,37 @@
208
  "use_coco": false,
209
  "use_multi_epochs_loader": false,
210
  "val_data_dir": "/lustre/fsw/portfolios/llmservice/projects/llmservice_nlp_fm/datasets/classification/imagenet-1k/webdataset",
211
- "val_img_size": 378,
 
 
212
  "val_split": "val",
213
- "validation_batch_size": 128,
214
  "vflip": 0.0,
215
  "wandb_entity": "",
216
- "wandb_group": "dfn_oai",
217
  "wandb_job_type": "",
218
  "wandb_name": "",
219
  "wandb_project": "",
220
- "warmup_epochs": 2.5,
221
  "warmup_lr": 1e-05,
222
  "warmup_prefix": false,
223
- "weight_decay": 2e-05,
224
  "worker_seeding": "all",
225
- "workers": 4,
226
- "world_size": 64
227
  },
228
  "auto_map": {
229
  "AutoConfig": "hf_model.RADIOConfig",
230
  "AutoModel": "hf_model.RADIOModel"
231
  },
232
- "return_spatial_features": true,
233
- "return_summary": true,
234
- "torch_dtype": "float32",
235
- "transformers_version": "4.29.0",
236
- "version": "v1"
 
 
 
 
 
237
  }
 
1
  {
2
+ "adaptor_names": null,
3
  "architectures": [
4
  "RADIOModel"
5
  ],
6
  "args": {
7
  "aa": null,
8
+ "amp": false,
9
+ "amp_dtype": "float16",
10
  "amp_impl": "native",
11
  "aug_repeats": 0,
12
  "aug_splits": 0,
13
+ "auto_loss_balance_mode": "manual",
14
  "batch_size": 32,
15
  "bn_eps": null,
16
  "bn_momentum": null,
17
  "cache_dir": null,
18
  "channels_last": false,
19
  "checkpoint_hist": 10,
20
+ "chk_keep_forever": 10,
21
  "class_map": "",
22
  "clip_grad": null,
23
  "clip_mode": "norm",
 
26
  "coco_image_dir": "/datasets/coco2017-adlsa/val2017",
27
  "color_jitter": 0.4,
28
  "cooldown_epochs": 0,
29
+ "cpe_max_size": 2048,
30
  "crd_loss": false,
31
  "crd_loss_weight": 0.8,
32
  "crop_pct": null,
33
  "cutmix": 0.0,
34
  "cutmix_minmax": null,
35
+ "data_dir": [
36
+ [
37
+ "/lustre/fsw/portfolios/llmservice/projects/llmservice_nlp_fm/datasets/captioning/datacomp/dc1b/stage2",
38
+ 0.95
39
+ ],
40
+ [
41
+ "/lustre/fsw/portfolios/llmservice/projects/llmservice_nlp_fm/datasets/segmentation/sam/stage1",
42
+ 0.05
43
+ ]
44
+ ],
45
  "dataset": "nvgpt4",
46
  "dataset_download": false,
47
  "debug_full_knn": false,
 
59
  "drop_block": null,
60
  "drop_connect": null,
61
  "drop_path": null,
62
+ "dtype": "bfloat16",
63
  "epoch_repeats": 0.0,
64
+ "epochs": 50,
65
  "eval": false,
66
  "eval_metric": "knn_top1",
67
  "eval_teacher": false,
 
71
  "fast_norm": false,
72
  "feature_summarizer": "cls_token",
73
  "feature_upscale_factor": null,
74
+ "force_new_wandb_id": false,
75
+ "force_spectral_reparam": false,
76
  "fuser": "",
77
+ "gp": null,
78
  "grad_accum_steps": 1,
79
  "grad_checkpointing": false,
80
  "head_init_bias": null,
 
104
  "lr_noise_pct": 0.67,
105
  "lr_noise_std": 1.0,
106
  "mean": null,
107
+ "mesa": {
108
+ "gaussian_kl": false,
109
+ "start_epoch": 100
110
+ },
111
  "min_lr": 0,
112
  "mixup": 0.0,
113
  "mixup_mode": "batch",
 
117
  "mlp_hidden_size": 1520,
118
  "mlp_num_inner": 3,
119
  "mlp_version": "v2",
120
+ "model": "vit_huge_patch16_224_mlpnorm",
121
+ "model_ema": {
122
+ "decay": 0.9998,
123
+ "force_cpu": false,
124
+ "power": false,
125
+ "power_stds": [
126
+ 0.05,
127
+ 0.1
128
+ ],
129
+ "start_epoch": 0
130
+ },
131
  "model_kwargs": {},
132
+ "model_norm": true,
133
  "momentum": 0.9,
134
  "no_aug": false,
135
  "no_ddp_bb": false,
136
  "no_prefetcher": false,
137
  "no_resume_opt": false,
138
  "num_classes": null,
139
+ "opt": "lamb",
140
  "opt_betas": null,
141
  "opt_eps": null,
142
+ "opt_kwargs": {
143
+ "filter_bias_and_bn": false
144
+ },
145
+ "output": "/lustre/fs6/portfolios/llmservice/users/mranzinger/output/evfm/ohem/3-13-24_vit-h-16_bf16_ep50",
146
  "patience_epochs": 10,
147
  "pin_mem": false,
148
  "prefetcher": true,
 
154
  ],
155
  "recount": 1,
156
  "recovery_interval": 0,
157
+ "register_multiple": 16,
158
  "remode": "pixel",
159
  "reprob": 0.0,
160
  "resplit": false,
161
+ "resume": "/lustre/fs6/portfolios/llmservice/users/mranzinger/output/evfm/ohem/3-13-24_vit-h-16_bf16_ep50/checkpoints/checkpoint-48.pth.tar",
162
  "save_images": false,
163
  "scale": [
164
  0.5,
 
168
  "sched_on_updates": true,
169
  "seed": 42,
170
  "smoothing": 0.1,
171
+ "spectral_reparam": false,
172
  "split_bn": false,
173
  "start_epoch": null,
174
  "std": null,
175
  "steps_per_epoch": 2000,
176
  "sync_bn": false,
177
+ "synchronize_step": true,
178
  "teachers": [
179
  {
180
  "amp": true,
181
  "amp_dtype": "bfloat16",
182
  "batch_size": 16,
183
+ "data_dir": [
184
+ [
185
+ "/lustre/fsw/portfolios/llmservice/projects/llmservice_nlp_fm/datasets/captioning/datacomp/dc1b/stage2",
186
+ 0.95
187
+ ],
188
+ [
189
+ "/lustre/fsw/portfolios/llmservice/projects/llmservice_nlp_fm/datasets/segmentation/sam/stage1",
190
+ 0.05
191
+ ]
192
+ ],
193
  "fd_loss_weight": 1.0,
194
  "fd_normalize": false,
195
  "feature_distillation": true,
196
  "input_size": 378,
197
+ "match_pre_proj": false,
198
  "model": "ViT-H-14-378-quickgelu",
199
  "name": "clip",
200
  "pretrained": "dfn5b",
201
  "sample_rate": 16,
202
+ "student_resolution": 432,
203
  "summary_loss_weight": 1.0,
204
+ "torchcompile": true,
205
  "type": "open_clip",
206
  "vitdet_prob": 0.05,
207
  "vitdet_window_sizes": [
 
219
  "fd_normalize": false,
220
  "feature_distillation": true,
221
  "input_size": 336,
222
+ "match_pre_proj": false,
223
  "model": "ViT-L/14@336px",
224
  "name": "openai_clip",
225
  "pretrained": "openai",
226
  "sample_rate": 16,
227
  "summary_loss_weight": 0.8,
228
+ "torchcompile": true,
229
  "type": "openai_clip",
230
  "use_summary": false
231
  },
 
233
  "amp": true,
234
  "amp_dtype": "bfloat16",
235
  "batch_size": 16,
236
+ "fd_loss_weight": 2.0,
237
  "fd_normalize": false,
238
  "feature_distillation": true,
239
+ "input_size": 378,
240
+ "model": "dinov2_vitg14_reg",
241
  "name": "dino_v2",
242
  "sample_rate": 16,
243
  "summary_loss_weight": 1.0,
244
+ "torchcompile": true,
245
  "type": "dino_v2"
246
+ },
247
+ {
248
+ "amp": false,
249
+ "batch_size": 2,
250
+ "data_dir": [
251
+ [
252
+ "/lustre/fsw/portfolios/llmservice/projects/llmservice_nlp_fm/datasets/segmentation/sam/stage1",
253
+ 0.4
254
+ ]
255
+ ],
256
+ "fd_loss_fn": "MSE",
257
+ "fd_loss_weight": 0.25,
258
+ "fd_normalize": false,
259
+ "fd_ohem": true,
260
+ "feature_distillation": true,
261
+ "input_size": 1024,
262
+ "model": "vit-h",
263
+ "name": "sam",
264
+ "sample_rate": 2,
265
+ "student_resolution": 1024,
266
+ "summary_loss_weight": 1e-05,
267
+ "type": "sam",
268
+ "use_summary": false,
269
+ "vitdet_prob": 0.99,
270
+ "vitdet_window_sizes": [
271
+ 8,
272
+ 16,
273
+ 16
274
+ ]
275
+ },
276
+ {
277
+ "amp": true,
278
+ "batch_size": 2,
279
+ "data_dir": [
280
+ [
281
+ "/lustre/fsw/portfolios/llmservice/projects/llmservice_nlp_fm/datasets/ocr/publaynet/webdataset",
282
+ 0.4
283
+ ],
284
+ [
285
+ "/lustre/fsw/portfolios/llmservice/projects/llmservice_nlp_fm/datasets/ocr/staging/arxiv/hocr",
286
+ 0.4
287
+ ],
288
+ [
289
+ "/lustre/fsw/portfolios/llmservice/projects/llmservice_nlp_fm/datasets/ocr/scene-text/scene-text/text_ocr/webdataset",
290
+ 0.15
291
+ ],
292
+ [
293
+ "/lustre/fsw/portfolios/llmservice/projects/llmservice_nlp_fm/datasets/ocr/scene-text/scene-text/hiertext/webdataset",
294
+ 0.05
295
+ ]
296
+ ],
297
+ "fd_loss_fn": "MSE",
298
+ "fd_loss_weight": 0.13,
299
+ "fd_normalize": false,
300
+ "fd_ohem": true,
301
+ "fd_upsample_factor": 4,
302
+ "feature_distillation": true,
303
+ "input_size": 1024,
304
+ "model": "quality",
305
+ "name": "rtx-translate",
306
+ "sample_rate": 2,
307
+ "student_resolution": 1024,
308
+ "summary_loss_weight": 1e-05,
309
+ "type": "rtx_translate",
310
+ "use_summary": false,
311
+ "vitdet_prob": 0.99,
312
+ "vitdet_window_sizes": [
313
+ 8,
314
+ 16,
315
+ 16
316
+ ]
317
  }
318
  ],
319
  "torchcompile": null,
 
324
  "use_coco": false,
325
  "use_multi_epochs_loader": false,
326
  "val_data_dir": "/lustre/fsw/portfolios/llmservice/projects/llmservice_nlp_fm/datasets/classification/imagenet-1k/webdataset",
327
+ "val_ema_only": false,
328
+ "val_img_size": 432,
329
+ "val_jobs_script": "run_validation_jobs_vit-h-16.sh",
330
  "val_split": "val",
331
+ "validation_batch_size": 64,
332
  "vflip": 0.0,
333
  "wandb_entity": "",
334
+ "wandb_group": "ohem",
335
  "wandb_job_type": "",
336
  "wandb_name": "",
337
  "wandb_project": "",
338
+ "warmup_epochs": 0.5,
339
  "warmup_lr": 1e-05,
340
  "warmup_prefix": false,
341
+ "weight_decay": 0.02,
342
  "worker_seeding": "all",
343
+ "workers": 8,
344
+ "world_size": 128
345
  },
346
  "auto_map": {
347
  "AutoConfig": "hf_model.RADIOConfig",
348
  "AutoModel": "hf_model.RADIOModel"
349
  },
350
+ "max_resolution": 2048,
351
+ "patch_size": 16,
352
+ "preferred_resolution": [
353
+ 432,
354
+ 432
355
+ ],
356
+ "torch_dtype": "bfloat16",
357
+ "transformers_version": "4.37.2",
358
+ "version": "radio_v2.1",
359
+ "vitdet_window_size": null
360
  }
enable_cpe_support.py CHANGED
@@ -1,4 +1,4 @@
1
- # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
2
  #
3
  # NVIDIA CORPORATION and its licensors retain all intellectual property
4
  # and proprietary rights in and to this software, related documentation
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
  #
3
  # NVIDIA CORPORATION and its licensors retain all intellectual property
4
  # and proprietary rights in and to this software, related documentation
eradio_model.py ADDED
@@ -0,0 +1,1802 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
6
+ # and proprietary rights in and to this software, related documentation
7
+ # and any modifications thereto. Any use, reproduction, disclosure or
8
+ # distribution of this software and related documentation without an express
9
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
10
+
11
+ # E-RADIO (FasterViTv2) model from
12
+ # Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. "AM-RADIO: Agglomerative Model--Reduce All Domains Into One." arXiv preprint arXiv:2312.06709 (2023).
13
+
14
+ # based on FasterViT, Swin Transformer, YOLOv8
15
+
16
+ # FasterViT:
17
+ # Ali Hatamizadeh, Greg Heinrich, Hongxu Yin, Andrew Tao, Jose M. Alvarez, Jan Kautz, and Pavlo Molchanov. "FasterViT: Fast Vision Transformers with Hierarchical Attention." arXiv preprint arXiv:2306.06189 (2023).
18
+
19
+ import timm
20
+ import torch
21
+ import torch.nn as nn
22
+ from timm.models.registry import register_model
23
+
24
+ from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
25
+ import numpy as np
26
+ import torch.nn.functional as F
27
+ import math
28
+ import warnings
29
+
30
+ #######################
31
+ ## Codebase from YOLOv8
32
+ ## BEGINNING
33
+ #######################
34
+
35
+ class C2f(nn.Module):
36
+ """Faster Implementation of CSP Bottleneck with 2 convolutions."""
37
+ """From YOLOv8 codebase"""
38
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, drop_path=None): # ch_in, ch_out, number, shortcut, groups, expansion
39
+ super().__init__()
40
+ if drop_path is None:
41
+ drop_path = [0.0] * n
42
+
43
+ self.c = int(c2 * e) # hidden channels
44
+ self.cv1 = Conv(c1, 2 * self.c, 1, 1)
45
+ self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
46
+ self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0, drop_path=drop_path[i]) for i in range(n))
47
+
48
+ def forward(self, x):
49
+ """Forward pass through C2f layer."""
50
+ y = list(self.cv1(x).chunk(2, 1))
51
+ y.extend(m(y[-1]) for m in self.m)
52
+ return self.cv2(torch.cat(y, 1))
53
+
54
+ def forward_split(self, x):
55
+ """Forward pass using split() instead of chunk()."""
56
+ y = list(self.cv1(x).split((self.c, self.c), 1))
57
+ y.extend(m(y[-1]) for m in self.m)
58
+ return self.cv2(torch.cat(y, 1))
59
+
60
+ class Bottleneck(nn.Module):
61
+ """Standard bottleneck."""
62
+
63
+ def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5, drop_path=0.0): # ch_in, ch_out, shortcut, groups, kernels, expand
64
+ super().__init__()
65
+ c_ = int(c2 * e) # hidden channels
66
+ self.cv1 = Conv(c1, c_, k[0], 1)
67
+ self.cv2 = Conv(c_, c2, k[1], 1, g=g)
68
+ self.add = shortcut and c1 == c2
69
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
70
+
71
+ def forward(self, x):
72
+ """'forward()' applies the YOLOv5 FPN to input data."""
73
+ return x + self.drop_path1(self.cv2(self.cv1(x))) if self.add else self.cv2(self.cv1(x))
74
+
75
+
76
+ class Conv(nn.Module):
77
+ """Modified to support layer fusion"""
78
+ default_act = nn.SiLU() # default activation
79
+
80
+ def __init__(self, a, b, kernel_size=1, stride=1, padding=None, g=1, dilation=1, bn_weight_init=1, bias=False, act=True):
81
+ super().__init__()
82
+
83
+ self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, autopad(kernel_size, padding, dilation), dilation, g, bias=False)
84
+ if 1:
85
+ self.bn = torch.nn.BatchNorm2d(b)
86
+ torch.nn.init.constant_(self.bn.weight, bn_weight_init)
87
+ torch.nn.init.constant_(self.bn.bias, 0)
88
+ self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
89
+
90
+
91
+ def forward(self,x):
92
+ x = self.conv(x)
93
+ x = self.bn(x)
94
+ x = self.act(x)
95
+ return x
96
+
97
+ @torch.no_grad()
98
+ def switch_to_deploy(self):
99
+ # return 1
100
+ if not isinstance(self.bn, nn.Identity):
101
+ c, bn = self.conv, self.bn
102
+ w = bn.weight / (bn.running_var + bn.eps) ** 0.5
103
+ w = c.weight * w[:, None, None, None]
104
+ b = bn.bias - bn.running_mean * bn.weight / \
105
+ (bn.running_var + bn.eps)**0.5
106
+
107
+ self.conv.weight.data.copy_(w)
108
+ self.conv.bias = nn.Parameter(b)
109
+
110
+ self.bn = nn.Identity()
111
+
112
+ def autopad(k, p=None, d=1): # kernel, padding, dilation
113
+ """Pad to 'same' shape outputs."""
114
+ if d > 1:
115
+ k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
116
+ if p is None:
117
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
118
+ return p
119
+
120
+
121
+ #######################
122
+ ## Codebase from YOLOv8
123
+ ## END
124
+ #######################
125
+
126
+ def pixel_unshuffle(data, factor=2):
127
+ # performs nn.PixelShuffle(factor) in reverse, torch has some bug for ONNX and TRT, so doing it manually
128
+ B, C, H, W = data.shape
129
+ return data.view(B, C, factor, H//factor, factor, W//factor).permute(0,1,2,4,3,5).reshape(B, -1, H//factor, W//factor)
130
+
131
+ class SwiGLU(nn.Module):
132
+ # should be more advanced, but doesnt improve results so far
133
+ def forward(self, x):
134
+ x, gate = x.chunk(2, dim=-1)
135
+ return F.silu(gate) * x
136
+
137
+
138
+ def window_partition(x, window_size):
139
+ """
140
+ Function for partitioning image into windows and later do windowed attention
141
+ Args:
142
+ x: (B, C, H, W)
143
+ window_size: window size
144
+ Returns:
145
+ windows - local window features (num_windows*B, window_size*window_size, C)
146
+ (Hp, Wp) - the size of the padded image
147
+ """
148
+ B, C, H, W = x.shape
149
+
150
+ if window_size == 0 or (window_size==H and window_size==W):
151
+ windows = x.flatten(2).transpose(1, 2)
152
+ Hp, Wp = H, W
153
+ else:
154
+ pad_h = (window_size - H % window_size) % window_size
155
+ pad_w = (window_size - W % window_size) % window_size
156
+ if pad_h > 0 or pad_w > 0:
157
+ x = F.pad(x, (0, pad_w, 0, pad_h), mode="reflect")
158
+ Hp, Wp = H + pad_h, W + pad_w
159
+
160
+ x = x.view(B, C, Hp // window_size, window_size, Wp // window_size, window_size)
161
+ windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
162
+
163
+ return windows, (Hp, Wp)
164
+
165
+ class Conv2d_BN(nn.Module):
166
+ '''
167
+ Conv2d + BN layer with folding capability to speed up inference
168
+ Can be merged with Conv() function with additional arguments
169
+ '''
170
+ def __init__(self, a, b, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1, bias=False):
171
+ super().__init__()
172
+ self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, padding, dilation, groups, bias=False)
173
+ if 1:
174
+ self.bn = torch.nn.BatchNorm2d(b)
175
+ torch.nn.init.constant_(self.bn.weight, bn_weight_init)
176
+ torch.nn.init.constant_(self.bn.bias, 0)
177
+
178
+ def forward(self,x):
179
+ x = self.conv(x)
180
+ x = self.bn(x)
181
+ return x
182
+
183
+ @torch.no_grad()
184
+ def switch_to_deploy(self):
185
+ if not isinstance(self.bn, nn.Identity):
186
+ c, bn = self.conv, self.bn
187
+ w = bn.weight / (bn.running_var + bn.eps) ** 0.5
188
+ w = c.weight * w[:, None, None, None]
189
+ b = bn.bias - bn.running_mean * bn.weight / \
190
+ (bn.running_var + bn.eps)**0.5
191
+ self.conv.weight.data.copy_(w)
192
+ self.conv.bias = nn.Parameter(b)
193
+ self.bn = nn.Identity()
194
+
195
+
196
+
197
+ def window_reverse(windows, window_size, H, W, pad_hw):
198
+ """
199
+ Windows to the full feature map
200
+ Args:
201
+ windows: local window features (num_windows*B, window_size, window_size, C)
202
+ window_size: Window size
203
+ H: Height of image
204
+ W: Width of image
205
+ pad_w - a tuple of image passing used in windowing step
206
+ Returns:
207
+ x: (B, C, H, W)
208
+
209
+ """
210
+ # print(f"window_reverse, windows.shape {windows.shape}")
211
+ Hp, Wp = pad_hw
212
+ if window_size == 0 or (window_size==H and window_size==W):
213
+ B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
214
+ x = windows.transpose(1, 2).view(B, -1, H, W)
215
+ else:
216
+ B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
217
+ x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
218
+ x = x.permute(0, 5, 1, 3, 2, 4).reshape(B,windows.shape[2], Hp, Wp)
219
+
220
+ if Hp > H or Wp > W:
221
+ x = x[:, :, :H, :W, ].contiguous()
222
+
223
+ return x
224
+
225
+
226
+
227
+ class PosEmbMLPSwinv2D(nn.Module):
228
+ """
229
+ 2D positional embedding from Swin Transformer v2
230
+ Added functionality to store the positional embedding in the model and not recompute it every time
231
+ """
232
+ def __init__(
233
+ self, window_size, pretrained_window_size, num_heads, seq_length, no_log=False, cpb_mlp_hidden=512,
234
+ ):
235
+ super().__init__()
236
+ self.window_size = window_size
237
+ self.num_heads = num_heads
238
+ # mlp to generate continuous relative position bias
239
+ self.cpb_mlp = nn.Sequential(
240
+ nn.Linear(2, cpb_mlp_hidden, bias=True),
241
+ nn.ReLU(inplace=True),
242
+ nn.Linear(cpb_mlp_hidden, num_heads, bias=False),
243
+ )
244
+
245
+ self.grid_exists = False
246
+ self.seq_length = seq_length
247
+ self.deploy = False
248
+ self.num_heads = num_heads
249
+ self.no_log = no_log
250
+ self.pretrained_window_size = pretrained_window_size
251
+ self.relative_bias_window_size = window_size
252
+
253
+ relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(window_size, num_heads,
254
+ pretrained_window_size, seq_length,
255
+ no_log)
256
+
257
+ self.register_buffer("relative_coords_table", relative_coords_table)
258
+ self.register_buffer("relative_position_index", relative_position_index)
259
+ self.register_buffer("relative_bias", relative_bias) # for EMA
260
+
261
+ def relative_bias_initialization(self, window_size, num_heads, pretrained_window_size, seq_length, no_log):
262
+ # as in separate function to support window size chage after model weights loading
263
+ relative_coords_h = torch.arange(
264
+ -(window_size[0] - 1), window_size[0], dtype=torch.float32
265
+ )
266
+ relative_coords_w = torch.arange(
267
+ -(window_size[1] - 1), window_size[1], dtype=torch.float32
268
+ )
269
+ relative_coords_table = (
270
+ torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w]))
271
+ .permute(1, 2, 0)
272
+ .contiguous()
273
+ .unsqueeze(0)
274
+ ) # 1, 2*Wh-1, 2*Ww-1, 2
275
+ if pretrained_window_size[0] > 0:
276
+ relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1
277
+ relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1
278
+ else:
279
+ relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1
280
+ relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1
281
+
282
+ if not no_log:
283
+ relative_coords_table *= 8 # normalize to -8, 8
284
+ relative_coords_table = (
285
+ torch.sign(relative_coords_table)
286
+ * torch.log2(torch.abs(relative_coords_table) + 1.0)
287
+ / np.log2(8)
288
+ )
289
+
290
+ # get pair-wise relative position index for each token inside the window
291
+ coords_h = torch.arange(self.window_size[0])
292
+ coords_w = torch.arange(self.window_size[1])
293
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
294
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
295
+ relative_coords = (
296
+ coords_flatten[:, :, None] - coords_flatten[:, None, :]
297
+ ) # 2, Wh*Ww, Wh*Ww
298
+ relative_coords = relative_coords.permute(
299
+ 1, 2, 0
300
+ ).contiguous() # Wh*Ww, Wh*Ww, 2
301
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
302
+ relative_coords[:, :, 1] += self.window_size[1] - 1
303
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
304
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
305
+
306
+ relative_bias = torch.zeros(1, num_heads, seq_length, seq_length)
307
+
308
+ self.relative_bias_window_size = window_size
309
+
310
+ return relative_coords_table, relative_position_index, relative_bias
311
+
312
+
313
+ def switch_to_deploy(self):
314
+ self.deploy = True
315
+ self.grid_exists = True
316
+
317
+ def forward(self, input_tensor):
318
+ # for efficiency, we want this forward to be folded into a single operation (sum)
319
+ # if resolution stays the same, then we dont need to recompute MLP layers
320
+
321
+ if not self.deploy or self.training:
322
+ self.grid_exists = False
323
+
324
+ #compare if all elements in self.window_size list match those in self.relative_bias_window_size
325
+ if not all([self.window_size[i] == self.relative_bias_window_size[i] for i in range(len(self.window_size))]):
326
+ relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(self.window_size, self.num_heads,
327
+ self.pretrained_window_size, self.seq_length,
328
+ self.no_log)
329
+
330
+ self.relative_coords_table = relative_coords_table.to(self.relative_coords_table.device)
331
+ self.relative_position_index = relative_position_index.to(self.relative_position_index.device)
332
+ self.relative_bias = relative_bias.to(self.relative_bias.device)
333
+
334
+ if self.deploy and self.grid_exists:
335
+ input_tensor = input_tensor + self.relative_bias
336
+ return input_tensor
337
+
338
+ if 1:
339
+ self.grid_exists = True
340
+
341
+ relative_position_bias_table = self.cpb_mlp(
342
+ self.relative_coords_table
343
+ ).view(-1, self.num_heads)
344
+ relative_position_bias = relative_position_bias_table[
345
+ self.relative_position_index.view(-1)
346
+ ].view(
347
+ self.window_size[0] * self.window_size[1],
348
+ self.window_size[0] * self.window_size[1],
349
+ -1,
350
+ ) # Wh*Ww,Wh*Ww,nH
351
+
352
+ relative_position_bias = relative_position_bias.permute(
353
+ 2, 0, 1
354
+ ).contiguous() # nH, Wh*Ww, Wh*Ww
355
+ relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
356
+
357
+ self.relative_bias = relative_position_bias.unsqueeze(0)
358
+
359
+ input_tensor = input_tensor + self.relative_bias
360
+ return input_tensor
361
+
362
+
363
+ class GRAAttentionBlock(nn.Module):
364
+ def __init__(self, window_size, dim_in, dim_out,
365
+ num_heads, drop_path=0., qk_scale=None, qkv_bias=False,
366
+ norm_layer=nn.LayerNorm, layer_scale=None,
367
+ use_swiglu=True,
368
+ subsample_ratio=1, dim_ratio=1, conv_base=False,
369
+ do_windowing=True, multi_query=False, use_shift=0,
370
+ cpb_mlp_hidden=512, conv_groups_ratio=0):
371
+ '''
372
+ Global Resolution Attention Block , see README for details
373
+ Attention with subsampling to get a bigger receptive field for attention
374
+ conv_base - use conv2d instead of avgpool2d for downsample / upsample
375
+
376
+
377
+ '''
378
+ super().__init__()
379
+
380
+ self.shift_size=window_size//2 if use_shift else 0
381
+
382
+ self.do_windowing = do_windowing
383
+ self.subsample_ratio = subsample_ratio
384
+
385
+
386
+
387
+ if do_windowing:
388
+ if conv_base:
389
+ self.downsample_op = nn.Conv2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
390
+
391
+
392
+ self.downsample_mixer = nn.Identity()
393
+ self.upsample_mixer = nn.Identity()
394
+ self.upsample_op = nn.ConvTranspose2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
395
+ else:
396
+ self.downsample_op = nn.AvgPool2d(kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
397
+ self.downsample_mixer = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1) if subsample_ratio > 1 else nn.Identity()
398
+ self.upsample_mixer = nn.Upsample(scale_factor=subsample_ratio, mode='nearest') if subsample_ratio > 1 else nn.Identity()
399
+ self.upsample_op = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1, padding=0, bias=False) if subsample_ratio > 1 else nn.Identity()
400
+
401
+
402
+ # in case there is no downsampling conv we want to have it separately
403
+ # will help with information propagation between windows
404
+ if subsample_ratio == 1:
405
+ # conv_groups_ratio=0
406
+ self.pre_conv = Conv2d_BN(dim_in, dim_in, kernel_size=3, stride=1, padding=1, groups=max(1,int(conv_groups_ratio*dim_in)), bias=False)
407
+ # self.pre_conv = nn.Conv2d(dim_in, dim_in, kernel_size=3, stride=1, padding=1, groups=max(1,int(conv_groups_ratio*dim_in)), bias=False)
408
+ # self.pre_conv_act = nn.ReLU6()
409
+ #for simplicity:
410
+ self.pre_conv_act = nn.Identity()
411
+ if conv_groups_ratio == -1:
412
+ self.pre_conv = nn.Identity()
413
+ self.pre_conv_act = nn.Identity()
414
+
415
+ self.window_size = window_size
416
+
417
+ self.norm1 = norm_layer(dim_in)
418
+
419
+ self.attn = WindowAttention(
420
+ dim_in,
421
+ num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
422
+ resolution=window_size,
423
+ seq_length=window_size**2, dim_out=dim_in, multi_query=multi_query,
424
+ shift_size=self.shift_size, cpb_mlp_hidden=cpb_mlp_hidden)
425
+
426
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
427
+
428
+ use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
429
+ self.gamma1 = nn.Parameter(layer_scale * torch.ones(dim_in)) if use_layer_scale else 1
430
+
431
+ ### mlp layer
432
+ mlp_ratio = 4
433
+ self.norm2 = norm_layer(dim_in)
434
+ mlp_hidden_dim = int(dim_in * mlp_ratio)
435
+
436
+ activation = nn.GELU if not use_swiglu else SwiGLU
437
+ mlp_hidden_dim = int((4 * dim_in * 1 / 2) / 64) * 64 if use_swiglu else mlp_hidden_dim
438
+
439
+ self.mlp = Mlp(in_features=dim_in, hidden_features=mlp_hidden_dim, act_layer=activation, use_swiglu=use_swiglu)
440
+
441
+ self.gamma2 = nn.Parameter(layer_scale * torch.ones(dim_in)) if layer_scale else 1
442
+ self.drop_path2=DropPath(drop_path) if drop_path > 0. else nn.Identity()
443
+
444
+
445
+ def forward(self, x):
446
+ skip_connection = x
447
+ attn_mask = None
448
+
449
+ # in case there is no downsampling conv we want to have it separately
450
+ # will help with information propagation
451
+ if self.subsample_ratio == 1:
452
+ x = self.pre_conv_act(self.pre_conv(x)) + skip_connection
453
+
454
+ if self.do_windowing:
455
+ # performing windowing if required
456
+ x = self.downsample_op(x)
457
+ x = self.downsample_mixer(x)
458
+
459
+ if self.window_size>0:
460
+ H, W = x.shape[2], x.shape[3]
461
+
462
+ if self.shift_size > 0 and H>self.window_size and W>self.window_size:
463
+ # @swin like cyclic shift, doesnt show better performance
464
+ x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(2, 3))
465
+
466
+ x, pad_hw = window_partition(x, self.window_size)
467
+
468
+ if self.shift_size > 0 and H>self.window_size and W>self.window_size:
469
+ # set atten matrix to have -100 and the top right square
470
+ # attn[:, :, :-self.shift_size, -self.shift_size:] = -100.0
471
+ # calculate attention mask for SW-MSA
472
+ # not used in final version, can be useful for some cases especially for high res
473
+ H, W = pad_hw
474
+ img_mask = torch.zeros((1, H, W, 1), device=x.device) # 1 H W 1
475
+ h_slices = (slice(0, -self.window_size),
476
+ slice(-self.window_size, -self.shift_size),
477
+ slice(-self.shift_size, None))
478
+ w_slices = (slice(0, -self.window_size),
479
+ slice(-self.window_size, -self.shift_size),
480
+ slice(-self.shift_size, None))
481
+ cnt = 0
482
+ for h in h_slices:
483
+ for w in w_slices:
484
+ img_mask[:, h, w, :] = cnt
485
+ cnt += 1
486
+ img_mask = img_mask.transpose(1,2).transpose(1,3)
487
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
488
+
489
+ mask_windows = mask_windows[0].view(-1, self.window_size * self.window_size)
490
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
491
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
492
+
493
+ # window attention
494
+ x = x + self.drop_path1(self.gamma1*self.attn(self.norm1(x), attn_mask=attn_mask)) # or pass H,W
495
+ # mlp layer
496
+ x = x + self.drop_path2(self.gamma2*self.mlp(self.norm2(x)))
497
+
498
+ if self.do_windowing:
499
+ if self.window_size > 0:
500
+ x = window_reverse(x, self.window_size, H, W, pad_hw)
501
+
502
+ # reverse cyclic shift
503
+ if self.shift_size > 0 and H>self.window_size and W>self.window_size:
504
+ # @swin like cyclic shift, not tested
505
+ x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(2, 3))
506
+
507
+ x = self.upsample_mixer(x)
508
+ x = self.upsample_op(x)
509
+
510
+
511
+ if x.shape[2] != skip_connection.shape[2] or x.shape[3] != skip_connection.shape[3]:
512
+ x = torch.nn.functional.pad(x, ( 0, -x.shape[3] + skip_connection.shape[3], 0, -x.shape[2] + skip_connection.shape[2]), mode="reflect")
513
+ # need to add skip connection because downsampling and upsampling will break residual connection
514
+ # 0.5 is needed to make sure that the skip connection is not too strong
515
+ # in case of no downsample / upsample we can show that 0.5 compensates for the residual connection
516
+ x = 0.5 * x + 0.5 * skip_connection
517
+ return x
518
+
519
+
520
+
521
+
522
+ class MultiResolutionAttention(nn.Module):
523
+ """
524
+ MultiResolutionAttention (MRA) module
525
+ The idea is to use multiple attention blocks with different resolution
526
+ Feature maps are downsampled / upsampled for each attention block on different blocks
527
+ Every attention block supports windowing
528
+ """
529
+
530
+ def __init__(self, window_size, sr_ratio,
531
+ dim, dim_ratio, num_heads,
532
+ do_windowing=True,
533
+ layer_scale=1e-5, norm_layer=nn.LayerNorm,
534
+ drop_path = 0, qkv_bias=False, qk_scale=1.0,
535
+ use_swiglu=True, multi_query=False, conv_base=False,
536
+ use_shift=0, cpb_mlp_hidden=512, conv_groups_ratio=0) -> None:
537
+ """
538
+ Args:
539
+ input_resolution: input image resolution
540
+ window_size: window size
541
+ compression_ratio: compression ratio
542
+ max_depth: maximum depth of the GRA module
543
+ use_shift: do window shifting
544
+ """
545
+ super().__init__()
546
+
547
+ depth = len(sr_ratio)
548
+
549
+ self.attention_blocks = nn.ModuleList()
550
+
551
+
552
+ for i in range(depth):
553
+ subsample_ratio = sr_ratio[i]
554
+ if len(window_size) > i:
555
+ window_size_local = window_size[i]
556
+ else:
557
+ window_size_local = window_size[0]
558
+
559
+ self.attention_blocks.append(GRAAttentionBlock(window_size=window_size_local,
560
+ dim_in=dim, dim_out=dim, num_heads=num_heads,
561
+ qkv_bias=qkv_bias, qk_scale=qk_scale, norm_layer=norm_layer,
562
+ layer_scale=layer_scale, drop_path=drop_path,
563
+ use_swiglu=use_swiglu, subsample_ratio=subsample_ratio, dim_ratio=dim_ratio,
564
+ do_windowing=do_windowing, multi_query=multi_query, conv_base=conv_base,
565
+ use_shift=use_shift, cpb_mlp_hidden=cpb_mlp_hidden, conv_groups_ratio=conv_groups_ratio),
566
+ )
567
+
568
+ def forward(self, x):
569
+
570
+ for attention_block in self.attention_blocks:
571
+ x = attention_block(x)
572
+
573
+ return x
574
+
575
+
576
+
577
+ class Mlp(nn.Module):
578
+ """
579
+ Multi-Layer Perceptron (MLP) block
580
+ """
581
+
582
+ def __init__(self,
583
+ in_features,
584
+ hidden_features=None,
585
+ out_features=None,
586
+ act_layer=nn.GELU,
587
+ use_swiglu=True,
588
+ drop=0.):
589
+ """
590
+ Args:
591
+ in_features: input features dimension.
592
+ hidden_features: hidden features dimension.
593
+ out_features: output features dimension.
594
+ act_layer: activation function.
595
+ drop: dropout rate.
596
+ """
597
+
598
+ super().__init__()
599
+ out_features = out_features or in_features
600
+ hidden_features = hidden_features or in_features
601
+ self.fc1 = nn.Linear(in_features, hidden_features * (2 if use_swiglu else 1), bias=False)
602
+ self.act = act_layer()
603
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
604
+
605
+ def forward(self, x):
606
+ x_size = x.size()
607
+ x = x.view(-1, x_size[-1])
608
+ x = self.fc1(x)
609
+ x = self.act(x)
610
+ x = self.fc2(x)
611
+ x = x.view(x_size)
612
+ return x
613
+
614
+ class Downsample(nn.Module):
615
+ """
616
+ Down-sampling block
617
+ Pixel Unshuffle is used for down-sampling, works great accuracy - wise but takes 10% more TRT time
618
+ """
619
+
620
+ def __init__(self,
621
+ dim,
622
+ shuffle = False,
623
+ ):
624
+ """
625
+ Args:
626
+ dim: feature size dimension.
627
+ shuffle: idea with
628
+ keep_dim: bool argument for maintaining the resolution.
629
+ """
630
+
631
+ super().__init__()
632
+ dim_out = 2 * dim
633
+
634
+ if shuffle:
635
+ self.norm = lambda x: pixel_unshuffle(x, factor=2)
636
+ self.reduction = Conv2d_BN(dim*4, dim_out, 1, 1, 0, bias=False)
637
+ # pixel unshuffleging works well but doesnt provide any speedup
638
+ else:
639
+ # removed layer norm for better, in this formulation we are getting 10% better speed
640
+ # LayerNorm for high resolution inputs will be a pain as it pools over the entire spatial dimension
641
+ # therefore we remove it compared to the original implementation in FasterViTv1
642
+ self.norm = nn.Identity()
643
+ self.reduction = Conv2d_BN(dim, dim_out, 3, 2, 1, bias=False)
644
+
645
+
646
+ def forward(self, x):
647
+ x = self.norm(x)
648
+ x = self.reduction(x)
649
+ return x
650
+
651
+
652
+ class PatchEmbed(nn.Module):
653
+ """
654
+ Patch embedding block
655
+ Used to convert image into an initial set of feature maps with lower resolution
656
+ """
657
+
658
+ def __init__(self, in_chans=3, in_dim=64, dim=96, shuffle_down=False):
659
+ """
660
+ Args:
661
+ in_chans: number of input channels.
662
+ in_dim: intermediate feature size dimension to speed up stem.
663
+ dim: final stem channel number
664
+ shuffle_down: use PixelUnshuffle for down-sampling, effectively increases the receptive field
665
+ """
666
+
667
+ super().__init__()
668
+ # shuffle_down = False
669
+ if not shuffle_down:
670
+ self.proj = nn.Identity()
671
+ self.conv_down = nn.Sequential(
672
+ Conv2d_BN(in_chans, in_dim, 3, 2, 1, bias=False),
673
+ nn.ReLU(),
674
+ Conv2d_BN(in_dim, dim, 3, 2, 1, bias=False),
675
+ nn.ReLU()
676
+ )
677
+ else:
678
+ self.proj = lambda x: pixel_unshuffle(x, factor=4)
679
+ self.conv_down = nn.Sequential(Conv2d_BN(in_chans*16, dim, 3, 1, 1),
680
+ nn.ReLU(),
681
+ )
682
+
683
+ def forward(self, x):
684
+ x = self.proj(x)
685
+ x = self.conv_down(x)
686
+ return x
687
+
688
+
689
+
690
+ class ConvBlock(nn.Module):
691
+ """
692
+ Convolutional block, used in first couple of stages
693
+ Experimented with plan resnet-18 like modules, they are the best in terms of throughput
694
+ Finally, YOLOv8 idea seem to work fine (resnet-18 like block with squeezed feature dimension, and feature concatendation at the end)
695
+ """
696
+ def __init__(self, dim,
697
+ drop_path=0.,
698
+ layer_scale=None,
699
+ kernel_size=3,
700
+ ):
701
+ super().__init__()
702
+
703
+ self.conv1 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
704
+ self.act1 = nn.GELU()
705
+
706
+ self.conv2 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
707
+
708
+ self.layer_scale = layer_scale
709
+ if layer_scale is not None and type(layer_scale) in [int, float]:
710
+ self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
711
+ self.layer_scale = True
712
+ else:
713
+ self.layer_scale = False
714
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
715
+
716
+ def forward(self, x):
717
+ input = x
718
+
719
+ x = self.conv1(x)
720
+ x = self.act1(x)
721
+ x = self.conv2(x)
722
+
723
+ if self.layer_scale:
724
+ x = x * self.gamma.view(1, -1, 1, 1)
725
+ x = input + self.drop_path(x)
726
+ return x
727
+
728
+
729
+ class WindowAttention(nn.Module):
730
+ # Windowed Attention from SwinV2
731
+ # use a MLP trick to deal with various input image resolutions, then fold it to improve speed
732
+
733
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, resolution=0,
734
+ seq_length=0, dim_out=None, multi_query=False, shift_size=0, cpb_mlp_hidden=512):
735
+ # taken from EdgeViT and tweaked with attention bias.
736
+ super().__init__()
737
+ if not dim_out: dim_out = dim
738
+ self.shift_size = shift_size
739
+ self.multi_query = multi_query
740
+ self.num_heads = num_heads
741
+ head_dim = dim // num_heads
742
+ self.head_dim = dim // num_heads
743
+
744
+ self.dim_internal = dim
745
+
746
+ self.scale = qk_scale or head_dim ** -0.5
747
+ if not multi_query:
748
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
749
+ else:
750
+ self.qkv = nn.Linear(dim, dim + 2*self.head_dim, bias=qkv_bias)
751
+
752
+ self.proj = nn.Linear(dim, dim_out, bias=False)
753
+ # attention positional bias
754
+ self.pos_emb_funct = PosEmbMLPSwinv2D(window_size=[resolution, resolution],
755
+ pretrained_window_size=[resolution, resolution],
756
+ num_heads=num_heads,
757
+ seq_length=seq_length,
758
+ cpb_mlp_hidden=cpb_mlp_hidden)
759
+
760
+ self.resolution = resolution
761
+
762
+ def forward(self, x, attn_mask = None):
763
+ B, N, C = x.shape
764
+
765
+ if not self.multi_query:
766
+ qkv = self.qkv(x).reshape(B, -1, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
767
+ q, k, v = qkv[0], qkv[1], qkv[2]
768
+ else:
769
+ qkv = self.qkv(x)
770
+ (q, k, v) = qkv.split([self.dim_internal, self.head_dim, self.head_dim], dim=2)
771
+
772
+ q = q.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
773
+ k = k.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
774
+ v = v.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
775
+
776
+ attn = (q @ k.transpose(-2, -1)) * self.scale
777
+
778
+ attn = self.pos_emb_funct(attn)
779
+
780
+ #add window shift
781
+ if attn_mask is not None:
782
+ nW = attn_mask.shape[0]
783
+ attn = attn.view(B // nW, nW, self.num_heads, N, N) + attn_mask.unsqueeze(1).unsqueeze(0)
784
+ attn = attn.view(-1, self.num_heads, N, N)
785
+
786
+ attn = attn.softmax(dim=-1)
787
+ x = (attn @ v).transpose(1, 2).reshape(B, -1, C)
788
+ x = self.proj(x)
789
+ return x
790
+
791
+
792
+
793
+ class FasterViTLayer(nn.Module):
794
+ """
795
+ fastervitlayer
796
+ """
797
+
798
+ def __init__(self,
799
+ dim,
800
+ depth,
801
+ num_heads,
802
+ window_size,
803
+ conv=False,
804
+ downsample=True,
805
+ mlp_ratio=4.,
806
+ qkv_bias=False,
807
+ qk_scale=None,
808
+ norm_layer=nn.LayerNorm,
809
+ drop_path=0.,
810
+ layer_scale=None,
811
+ layer_scale_conv=None,
812
+ sr_dim_ratio=1,
813
+ sr_ratio=1,
814
+ multi_query=False,
815
+ use_swiglu=True,
816
+ yolo_arch=False,
817
+ downsample_shuffle=False,
818
+ conv_base=False,
819
+ use_shift=False,
820
+ cpb_mlp_hidden=512,
821
+ conv_groups_ratio=0,
822
+ verbose: bool = True,
823
+
824
+ ):
825
+ """
826
+ Args:
827
+ dim: feature size dimension.
828
+ depth: number of layers in each stage.
829
+ input_resolution: input image resolution.
830
+ window_size: window size in each stage.
831
+ downsample: bool argument for down-sampling.
832
+ mlp_ratio: MLP ratio.
833
+ num_heads: number of heads in each stage.
834
+ qkv_bias: bool argument for query, key, value learnable bias.
835
+ qk_scale: bool argument to scaling query, key.
836
+ drop: dropout rate.
837
+ attn_drop: attention dropout rate.
838
+ drop_path: drop path rate.
839
+ norm_layer: normalization layer.
840
+ layer_scale: layer scaling coefficient.
841
+ use_shift: SWIN like window shifting for half the window size for every alternating layer (considering multi-resolution)
842
+ conv_groups_ratio: group ratio for conv when no subsampling in multi-res attention
843
+ """
844
+
845
+ super().__init__()
846
+ self.conv = conv
847
+ self.yolo_arch=False
848
+ self.verbose = verbose
849
+ if conv:
850
+ if not yolo_arch:
851
+ self.blocks = nn.ModuleList([
852
+ ConvBlock(dim=dim,
853
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
854
+ layer_scale=layer_scale_conv)
855
+ for i in range(depth)])
856
+ self.blocks = nn.Sequential(*self.blocks)
857
+ else:
858
+ self.blocks = C2f(dim,dim,n=depth,shortcut=True,e=0.5)
859
+ self.yolo_arch=True
860
+ else:
861
+ if not isinstance(window_size, list): window_size = [window_size]
862
+ self.window_size = window_size[0]
863
+ self.do_single_windowing = True
864
+ if not isinstance(sr_ratio, list): sr_ratio = [sr_ratio]
865
+ self.sr_ratio = sr_ratio
866
+ if any([sr!=1 for sr in sr_ratio]) or len(set(window_size))>1:
867
+ self.do_single_windowing = False
868
+ do_windowing = True
869
+ else:
870
+ self.do_single_windowing = True
871
+ do_windowing = False
872
+
873
+ #for v2_2
874
+ if conv_groups_ratio != -1:
875
+ self.do_single_windowing = False
876
+ do_windowing = True
877
+
878
+ self.blocks = nn.ModuleList()
879
+ for i in range(depth):
880
+ self.blocks.append(
881
+ MultiResolutionAttention(window_size=window_size,
882
+ sr_ratio=sr_ratio,
883
+ dim=dim,
884
+ dim_ratio = sr_dim_ratio,
885
+ num_heads=num_heads,
886
+ norm_layer=norm_layer,
887
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
888
+ layer_scale=layer_scale,
889
+ qkv_bias=qkv_bias,
890
+ qk_scale=qk_scale,
891
+ use_swiglu=use_swiglu,
892
+ do_windowing=do_windowing,
893
+ multi_query=multi_query,
894
+ conv_base=conv_base,
895
+ cpb_mlp_hidden=cpb_mlp_hidden,
896
+ use_shift =0 if ((not use_shift) or ((i) % 2 == 0)) else True ,
897
+ conv_groups_ratio=conv_groups_ratio,
898
+ ))
899
+ self.blocks = nn.Sequential(*self.blocks)
900
+
901
+ self.transformer = not conv
902
+ self.downsample = None if not downsample else Downsample(dim=dim, shuffle=downsample_shuffle)
903
+
904
+
905
+ def forward(self, x):
906
+ B, C, H, W = x.shape
907
+
908
+ # do padding for transforemr
909
+ interpolate = True
910
+ if self.transformer and interpolate:
911
+ # Windowed Attention will split feature map into windows with the size of window_size x window_size
912
+ # if the resolution is not divisible by window_size, we need to interpolate the feature map
913
+ # can be done via padding, but doing so after training hurts the model performance.
914
+ # interpolation affects the performance as well, but not as much as padding
915
+ if isinstance(self.window_size, list) or isinstance(self.window_size, tuple):
916
+ current_max_window_size = max(self.window_size)
917
+ else:
918
+ current_max_window_size = self.window_size
919
+
920
+ max_window_size = max([res_upsample*current_max_window_size for res_upsample in self.sr_ratio])
921
+ if H % max_window_size != 0 or W % max_window_size != 0:
922
+ new_h = int(np.ceil(H/max_window_size)*max_window_size)
923
+ new_w = int(np.ceil(W/max_window_size)*max_window_size)
924
+ x = F.interpolate(x, size=(new_h, new_w), mode='nearest')
925
+ if self.verbose:
926
+ warnings.warn(f"Choosen window size is not optimal for given resolution. Interpolation of features maps will be done and it can affect the performance. Max window size is {max_window_size}, feature map size is {H}x{W}, interpolated feature map size is {new_h}x{new_w}.")
927
+
928
+
929
+ if self.transformer and self.do_single_windowing:
930
+ H, W = x.shape[2], x.shape[3]
931
+ x, pad_hw = window_partition(x, self.window_size)
932
+
933
+ #run main blocks
934
+ x = self.blocks(x)
935
+
936
+ if self.transformer and self.do_single_windowing:
937
+ x = window_reverse(x, self.window_size, H, W, pad_hw)
938
+
939
+ if self.transformer and interpolate:
940
+ #lets keep original resolution, might be not ideal, but for the upsampling tower we need to keep the expected resolution.
941
+ x = F.interpolate(x, size=(H, W), mode='nearest')
942
+
943
+ if self.downsample is None:
944
+ return x, x
945
+
946
+ return self.downsample(x), x # changing to output pre downsampled features
947
+
948
+
949
+ class InterpolateLayer(nn.Module):
950
+ def __init__(self, size=None, scale_factor=None, mode='nearest'):
951
+ super(InterpolateLayer, self).__init__()
952
+ self.size = size
953
+ self.scale_factor = scale_factor
954
+ self.mode = mode
955
+
956
+ def forward(self, x):
957
+ return F.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode)
958
+
959
+
960
+ class HiResNeck(nn.Module):
961
+ """
962
+ The block is used to output dense features from all stages
963
+ Otherwise, by default, only the last stage features are returned with FasterViTv2
964
+ """
965
+ def __init__(self, dim, depths, neck_start_stage, full_features_head_dim, downsample_enabled):
966
+
967
+ '''
968
+ Hi Resolution neck to support output of high res features that are useful for dense tasks.
969
+ depths - total number of layers in the base model
970
+ neck_start_stage - when to start the neck, 0 - start from the first stage, 1 - start from the second stage etc.
971
+ earlier layers result in higher resolution features at the cost of compute
972
+ full_features_head_dim - number of channels in the dense features head
973
+ '''
974
+ super().__init__()
975
+ # create feature projection layers for segmentation output
976
+ self.neck_features_proj = nn.ModuleList()
977
+ self.neck_start_stage = neck_start_stage
978
+ upsample_ratio = 1
979
+ for i in range(len(depths)):
980
+ level_n_features_output = int(dim * 2 ** i)
981
+
982
+ if self.neck_start_stage > i: continue
983
+
984
+ if (upsample_ratio > 1) or full_features_head_dim!=level_n_features_output:
985
+ feature_projection = nn.Sequential()
986
+ if False:
987
+ feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) #fast, but worse
988
+ feature_projection.add_module("dconv", nn.ConvTranspose2d(level_n_features_output,
989
+ full_features_head_dim, kernel_size=upsample_ratio, stride=upsample_ratio))
990
+ else:
991
+ # B, in_channels, H, W -> B, in_channels, H*upsample_ratio, W*upsample_ratio
992
+ # print("upsample ratio", upsample_ratio, level_n_features_output, level_n_features_output)
993
+ feature_projection.add_module("upsample", InterpolateLayer(scale_factor=upsample_ratio, mode='nearest'))
994
+ feature_projection.add_module("conv1", nn.Conv2d(level_n_features_output, level_n_features_output, kernel_size=3, stride=1, padding=1, groups=level_n_features_output))
995
+ feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output))
996
+ # B, in_channels, H*upsample_ratio, W*upsample_ratio -> B, full_features_head_dim, H*upsample_ratio, W*upsample_ratio
997
+ feature_projection.add_module("conv2", nn.Conv2d(level_n_features_output, full_features_head_dim, kernel_size=1, stride=1, padding=0))
998
+ else:
999
+ feature_projection = nn.Sequential()
1000
+
1001
+ self.neck_features_proj.append(feature_projection)
1002
+
1003
+ if i>0 and downsample_enabled[i]:
1004
+ upsample_ratio *= 2
1005
+
1006
+ def forward(self, x, il_level=-1, full_features=None):
1007
+ if self.neck_start_stage > il_level:
1008
+ return full_features
1009
+
1010
+ if full_features is None:
1011
+ full_features = self.neck_features_proj[il_level - self.neck_start_stage](x)
1012
+ else:
1013
+ #upsample torch tensor x to match full_features size, and add to full_features
1014
+ feature_projection = self.neck_features_proj[il_level - self.neck_start_stage](x)
1015
+ if feature_projection.shape[2] != full_features.shape[2] or feature_projection.shape[3] != full_features.shape[3]:
1016
+ feature_projection = torch.nn.functional.pad(feature_projection, ( 0, -feature_projection.shape[3] + full_features.shape[3], 0, -feature_projection.shape[2] + full_features.shape[2]))
1017
+ full_features = full_features + feature_projection
1018
+ return full_features
1019
+
1020
+ class FasterViT(nn.Module):
1021
+ """
1022
+ FasterViT
1023
+ """
1024
+
1025
+ def __init__(self,
1026
+ dim,
1027
+ in_dim,
1028
+ depths,
1029
+ window_size,
1030
+ mlp_ratio,
1031
+ num_heads,
1032
+ drop_path_rate=0.2,
1033
+ in_chans=3,
1034
+ num_classes=1000,
1035
+ qkv_bias=False,
1036
+ qk_scale=None,
1037
+ layer_scale=None,
1038
+ layer_scale_conv=None,
1039
+ layer_norm_last=False,
1040
+ sr_ratio = [1, 1, 1, 1],
1041
+ max_depth = -1,
1042
+ conv_base=False,
1043
+ use_swiglu=False,
1044
+ multi_query=False,
1045
+ norm_layer=nn.LayerNorm,
1046
+ drop_uniform=False,
1047
+ yolo_arch=False,
1048
+ shuffle_down=False,
1049
+ downsample_shuffle=False,
1050
+ return_full_features=False,
1051
+ full_features_head_dim=128,
1052
+ neck_start_stage=1,
1053
+ use_neck=False,
1054
+ use_shift=False,
1055
+ cpb_mlp_hidden=512,
1056
+ conv_groups_ratio=0,
1057
+ verbose: bool = False,
1058
+ **kwargs):
1059
+ """
1060
+ Args:
1061
+ dim: feature size dimension.
1062
+ depths: number of layers in each stage.
1063
+ window_size: window size in each stage.
1064
+ mlp_ratio: MLP ratio.
1065
+ num_heads: number of heads in each stage.
1066
+ drop_path_rate: drop path rate.
1067
+ in_chans: number of input channels.
1068
+ num_classes: number of classes.
1069
+ qkv_bias: bool argument for query, key, value learnable bias.
1070
+ qk_scale: bool argument to scaling query, key.
1071
+ drop_rate: dropout rate.
1072
+ attn_drop_rate: attention dropout rate.
1073
+ norm_layer: normalization layer.
1074
+ layer_scale: layer scaling coefficient.
1075
+ return_full_features: output dense features as well as logits
1076
+ full_features_head_dim: number of channels in the dense features head
1077
+ neck_start_stage: a stage id to start full feature neck. Model has 4 stages, indix starts with 0
1078
+ for 224 resolution, the output of the stage before downsample:
1079
+ stage 0: 56x56, stage 1: 28x28, stage 2: 14x14, stage 3: 7x7
1080
+ use_neck: even for summarization embedding use neck
1081
+ use_shift: SWIN like window shifting but without masking attention
1082
+ conv_groups_ratio: will be used for conv blocks where there is no multires attention,
1083
+ if 0 then normal conv,
1084
+ if 1 then channels are independent,
1085
+ if -1 then no conv at all
1086
+
1087
+ """
1088
+ super().__init__()
1089
+
1090
+ num_features = int(dim * 2 ** (len(depths) - 1))
1091
+ self.num_classes = num_classes
1092
+ self.patch_embed = PatchEmbed(in_chans=in_chans, in_dim=in_dim, dim=dim, shuffle_down=shuffle_down)
1093
+ # set return_full_features true if we want to return full features from all stages
1094
+ self.return_full_features = return_full_features
1095
+ self.use_neck = use_neck
1096
+
1097
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
1098
+ if drop_uniform:
1099
+ dpr = [drop_path_rate for x in range(sum(depths))]
1100
+
1101
+ if not isinstance(max_depth, list): max_depth = [max_depth] * len(depths)
1102
+
1103
+ self.levels = nn.ModuleList()
1104
+ for i in range(len(depths)):
1105
+ conv = True if (i == 0 or i == 1) else False
1106
+
1107
+ level = FasterViTLayer(dim=int(dim * 2 ** i),
1108
+ depth=depths[i],
1109
+ num_heads=num_heads[i],
1110
+ window_size=window_size[i],
1111
+ mlp_ratio=mlp_ratio,
1112
+ qkv_bias=qkv_bias,
1113
+ qk_scale=qk_scale,
1114
+ conv=conv,
1115
+ drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
1116
+ downsample=(i < len(depths) - 1),
1117
+ layer_scale=layer_scale,
1118
+ layer_scale_conv=layer_scale_conv,
1119
+ sr_ratio=sr_ratio[i],
1120
+ use_swiglu=use_swiglu,
1121
+ multi_query=multi_query,
1122
+ norm_layer=norm_layer,
1123
+ yolo_arch=yolo_arch,
1124
+ downsample_shuffle=downsample_shuffle,
1125
+ conv_base=conv_base,
1126
+ cpb_mlp_hidden=cpb_mlp_hidden,
1127
+ use_shift=use_shift,
1128
+ conv_groups_ratio=conv_groups_ratio,
1129
+ verbose=verbose)
1130
+
1131
+ self.levels.append(level)
1132
+
1133
+ if self.return_full_features or self.use_neck:
1134
+ #num_heads
1135
+ downsample_enabled = [self.levels[i-1].downsample is not None for i in range(len(self.levels))]
1136
+ self.high_res_neck = HiResNeck(dim, depths, neck_start_stage, full_features_head_dim, downsample_enabled)
1137
+
1138
+ self.switched_to_deploy = False
1139
+
1140
+ self.norm = LayerNorm2d(num_features) if layer_norm_last else nn.BatchNorm2d(num_features)
1141
+ self.avgpool = nn.AdaptiveAvgPool2d(1)
1142
+ self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()
1143
+ self.apply(self._init_weights)
1144
+
1145
+ def _init_weights(self, m):
1146
+ if isinstance(m, nn.Linear):
1147
+ trunc_normal_(m.weight, std=.02)
1148
+ if isinstance(m, nn.Linear) and m.bias is not None:
1149
+ nn.init.constant_(m.bias, 0)
1150
+ elif isinstance(m, nn.LayerNorm):
1151
+ nn.init.constant_(m.bias, 0)
1152
+ nn.init.constant_(m.weight, 1.0)
1153
+ elif isinstance(m, LayerNorm2d):
1154
+ nn.init.constant_(m.bias, 0)
1155
+ nn.init.constant_(m.weight, 1.0)
1156
+ elif isinstance(m, nn.BatchNorm2d):
1157
+ nn.init.ones_(m.weight)
1158
+ nn.init.zeros_(m.bias)
1159
+
1160
+ @torch.jit.ignore
1161
+ def no_weight_decay_keywords(self):
1162
+ return {'rpb'}
1163
+
1164
+ def forward_features(self, x):
1165
+ x = self.patch_embed(x)
1166
+ full_features = None
1167
+ for il, level in enumerate(self.levels):
1168
+ x, pre_downsample_x = level(x)
1169
+
1170
+ if self.return_full_features or self.use_neck:
1171
+ full_features = self.high_res_neck(pre_downsample_x, il, full_features)
1172
+
1173
+ # x = self.norm(full_features if (self.return_full_features or self.use_neck) else x)
1174
+ x = self.norm(x) # new version for
1175
+
1176
+ if not self.return_full_features:
1177
+ return x, None
1178
+
1179
+ return x, full_features
1180
+
1181
+ def forward(self, x):
1182
+ x, full_features = self.forward_features(x)
1183
+
1184
+ x = self.avgpool(x)
1185
+ x = torch.flatten(x, 1)
1186
+
1187
+ x = self.head(x)
1188
+ if full_features is not None:
1189
+ return x, full_features
1190
+ return x
1191
+
1192
+ def switch_to_deploy(self):
1193
+ '''
1194
+ A method to perform model self-compression
1195
+ merges BN into conv layers
1196
+ converts MLP relative positional bias into precomputed buffers
1197
+ '''
1198
+ if not self.switched_to_deploy:
1199
+ for level in [self.patch_embed, self.levels, self.head]:
1200
+ for module in level.modules():
1201
+ if hasattr(module, 'switch_to_deploy'):
1202
+ module.switch_to_deploy()
1203
+ self.switched_to_deploy = True
1204
+
1205
+
1206
+ def change_window_size(self, new_window_size):
1207
+ """
1208
+ FasterViT employs windowed attention, which may be sensitive to the choice of this parameter,
1209
+ especially in cases of uneven partitioning of the feature maps.
1210
+ FasterViT allows for the adjustment of the window size after training,
1211
+ making it adaptable to different input image resolutions.
1212
+ The recommended values for window size based on input resolution are as follows:
1213
+
1214
+ Input Resolution | Window Size
1215
+ 224 | 7
1216
+ 256 | 8
1217
+ 386 | 12
1218
+ 512 | 16
1219
+ Ideally, the window size should be a factor of the input resolution. In the third stage, we divide the resolution by 16, so the window size should be
1220
+ img_res/16/2
1221
+ for the third stage and img_res/32 for the last stage. While this can be applied in a brute-force manner, a better way is to do model.change_window_size.
1222
+ Manual way to change resolution -> model.change_window_size(resolution)
1223
+ """
1224
+ window_size = new_window_size
1225
+ print(f"Setting window size to {window_size}")
1226
+ for module in self.modules():
1227
+ if hasattr(module, "window_size"):
1228
+ # check if tuple or a number
1229
+ if isinstance(module.window_size, tuple):
1230
+ if module.window_size[0] != window_size:
1231
+ module.window_size = (window_size, window_size)
1232
+ elif isinstance(module.window_size, list):
1233
+ if module.window_size[0] != window_size:
1234
+ module.window_size = [window_size, window_size]
1235
+ else:
1236
+ module.window_size = window_size
1237
+
1238
+
1239
+ def set_optimal_window_size(self, image_dim, max_window_size = 16):
1240
+ """
1241
+ Using hand picked window size for various resolutions.
1242
+
1243
+ FasterViT employs windowed attention, which may be sensitive to the choice of this parameter,
1244
+ especially in cases of uneven partitioning of the feature maps.
1245
+ FasterViT allows for the adjustment of the window size after training,
1246
+ making it adaptable to different input image resolutions.
1247
+ The recommended values for window size based on input resolution are as follows:
1248
+
1249
+ Input Resolution | Window Size
1250
+ 224 | 7
1251
+ 256 | 8
1252
+ 386 | 12
1253
+ 512 | 16
1254
+ Ideally, the window size should be a factor of the input resolution. In the third stage, we divide the resolution by 16, so the window size should be
1255
+ img_res/16/2
1256
+ for the third stage and img_res/32 for the last stage. While this can be applied in a brute-force manner, a better way is to do model.change_window_size.
1257
+ Manual way to change resolution -> model.change_window_size(resolution)
1258
+
1259
+ """
1260
+ # import math
1261
+
1262
+ def divisorGenerator(n):
1263
+ large_divisors = []
1264
+ for i in range(1, int(math.sqrt(n) + 1)):
1265
+ if n % i == 0:
1266
+ yield i
1267
+ if i*i != n:
1268
+ large_divisors.append(n / i)
1269
+ for divisor in reversed(large_divisors):
1270
+ yield divisor
1271
+
1272
+ if isinstance(image_dim, list) or isinstance(image_dim, tuple):
1273
+ image_dim = min(image_dim)
1274
+
1275
+ # we do windowed attention in the 3rd stage for the first time, therefore //16,
1276
+ # we do subsampled attention with downsample by 2 so need to get //32 actually
1277
+ # ideally we should rewrite this to be dependent on the structure of the model like what if subsampled is removed etc
1278
+ all_divisors = np.array(list(divisorGenerator(image_dim//32)))
1279
+ new_window_size = int(min(all_divisors[all_divisors <= max_window_size][-1], max_window_size))
1280
+
1281
+ # for image_dim in [128, 224, 256, 384, 512, 768, 1024]:
1282
+ # all_divisors = np.array(list(divisorGenerator(image_dim//32)))
1283
+ # new_window_size = int(min(all_divisors[all_divisors <= max_window_size][-1], max_window_size))
1284
+ # print(f"Setting window size to {new_window_size} for image resolution {image_dim}")
1285
+
1286
+ self.change_window_size(new_window_size = new_window_size)
1287
+
1288
+ # 83.44200001953125
1289
+ @register_model
1290
+ def fastervit2_small(pretrained=False, **kwargs): #,
1291
+ model = FasterViT(depths=[3, 3, 5, 5],
1292
+ num_heads=[2, 4, 8, 16],
1293
+ window_size=[8, 8, [7, 7], 7],
1294
+ dim=96,
1295
+ in_dim=64,
1296
+ mlp_ratio=4,
1297
+ drop_path_rate=0.2,
1298
+ sr_ratio=[1, 1, [1, 2], 1],
1299
+ use_swiglu=False,
1300
+ downsample_shuffle=False,
1301
+ yolo_arch=True,
1302
+ shuffle_down=False,
1303
+ **kwargs)
1304
+ if pretrained:
1305
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1306
+ return model
1307
+
1308
+ # 82.61
1309
+ @register_model
1310
+ def fastervit2_tiny(pretrained=False, **kwargs): #,
1311
+ model = FasterViT(depths=[1, 3, 4, 5],
1312
+ num_heads=[2, 4, 8, 16],
1313
+ window_size=[8, 8, [7, 7], 7],
1314
+ dim=80,
1315
+ in_dim=64,
1316
+ mlp_ratio=4,
1317
+ drop_path_rate=0.2,
1318
+ sr_ratio=[1, 1, [2, 1], 1],
1319
+ use_swiglu=False,
1320
+ downsample_shuffle=False,
1321
+ yolo_arch=True,
1322
+ shuffle_down=False,
1323
+ **kwargs)
1324
+ if pretrained:
1325
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1326
+ return model
1327
+
1328
+ #'top1', 84.31800001220704
1329
+ @register_model
1330
+ def fastervit2_base(pretrained=False, **kwargs):
1331
+ model = FasterViT(depths=[3, 3, 5, 5],
1332
+ num_heads=[2, 4, 8, 16],
1333
+ window_size=[8, 8, [7, 7], 7],
1334
+ dim=128,
1335
+ in_dim=64,
1336
+ mlp_ratio=4,
1337
+ drop_path_rate=0.2,
1338
+ sr_ratio=[1, 1, [2, 1], 1],
1339
+ use_swiglu=False,
1340
+ yolo_arch=True,
1341
+ shuffle_down=False,
1342
+ conv_base=True,
1343
+ **kwargs)
1344
+ if pretrained:
1345
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1346
+ return model
1347
+
1348
+ #84.39999999267579
1349
+ @register_model
1350
+ def fastervit2_base_v1(pretrained=False, **kwargs):
1351
+ model = FasterViT(depths=[4, 4, 5, 5],
1352
+ num_heads=[2, 4, 8, 16],
1353
+ window_size=[8, 8, [7, 7], 7],
1354
+ dim=128,
1355
+ in_dim=64,
1356
+ mlp_ratio=4,
1357
+ drop_path_rate=0.2,
1358
+ sr_ratio=[1, 1, [2, 1], 1],
1359
+ use_swiglu=False,
1360
+ yolo_arch=True,
1361
+ shuffle_down=False,
1362
+ conv_base=True,
1363
+ downsample_shuffle=False,
1364
+ **kwargs)
1365
+ if pretrained:
1366
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1367
+ return model
1368
+
1369
+ @register_model
1370
+ def fastervit2_base_fullres1(pretrained=False, **kwargs):
1371
+ model = FasterViT(depths=[3, 3, 5, 5],
1372
+ num_heads=[2, 4, 8, 16],
1373
+ window_size=[8, 8, [7, 7], 7],
1374
+ dim=128,
1375
+ in_dim=64,
1376
+ mlp_ratio=4,
1377
+ drop_path_rate=0.2,
1378
+ sr_ratio=[1, 1, [2, 1], 1],
1379
+ use_swiglu=False,
1380
+ yolo_arch=True,
1381
+ shuffle_down=False,
1382
+ conv_base=True,
1383
+ use_neck=True,
1384
+ full_features_head_dim=1024,
1385
+ neck_start_stage=2,
1386
+ **kwargs)
1387
+ if pretrained:
1388
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1389
+ return model
1390
+
1391
+ @register_model
1392
+ def fastervit2_base_fullres2(pretrained=False, **kwargs):
1393
+ model = FasterViT(depths=[3, 3, 5, 5],
1394
+ num_heads=[2, 4, 8, 16],
1395
+ window_size=[8, 8, [7, 7], 7],
1396
+ dim=128,
1397
+ in_dim=64,
1398
+ mlp_ratio=4,
1399
+ drop_path_rate=0.2,
1400
+ sr_ratio=[1, 1, [2, 1], 1],
1401
+ use_swiglu=False,
1402
+ yolo_arch=True,
1403
+ shuffle_down=False,
1404
+ conv_base=True,
1405
+ use_neck=True,
1406
+ full_features_head_dim=512,
1407
+ neck_start_stage=1,
1408
+ **kwargs)
1409
+ if pretrained:
1410
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1411
+ return model
1412
+
1413
+ @register_model
1414
+ def fastervit2_base_fullres3(pretrained=False, **kwargs):
1415
+ model = FasterViT(depths=[3, 3, 5, 5],
1416
+ num_heads=[2, 4, 8, 16],
1417
+ window_size=[8, 8, [7, 7], 7],
1418
+ dim=128,
1419
+ in_dim=64,
1420
+ mlp_ratio=4,
1421
+ drop_path_rate=0.2,
1422
+ sr_ratio=[1, 1, [2, 1], 1],
1423
+ use_swiglu=False,
1424
+ yolo_arch=True,
1425
+ shuffle_down=False,
1426
+ conv_base=True,
1427
+ use_neck=True,
1428
+ full_features_head_dim=256,
1429
+ neck_start_stage=1,
1430
+ **kwargs)
1431
+ if pretrained:
1432
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1433
+ return model
1434
+
1435
+ @register_model
1436
+ def fastervit2_base_fullres4(pretrained=False, **kwargs):
1437
+ model = FasterViT(depths=[3, 3, 5, 5],
1438
+ num_heads=[2, 4, 8, 16],
1439
+ window_size=[8, 8, [7, 7], 7],
1440
+ dim=128,
1441
+ in_dim=64,
1442
+ mlp_ratio=4,
1443
+ drop_path_rate=0.2,
1444
+ sr_ratio=[1, 1, [2, 1], 1],
1445
+ use_swiglu=False,
1446
+ yolo_arch=True,
1447
+ shuffle_down=False,
1448
+ conv_base=True,
1449
+ use_neck=True,
1450
+ full_features_head_dim=256,
1451
+ neck_start_stage=2,
1452
+ **kwargs)
1453
+ if pretrained:
1454
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1455
+ return model
1456
+
1457
+ @register_model
1458
+ def fastervit2_base_fullres5(pretrained=False, **kwargs):
1459
+ model = FasterViT(depths=[3, 3, 5, 5],
1460
+ num_heads=[2, 4, 8, 16],
1461
+ window_size=[8, 8, [7, 7], 7],
1462
+ dim=128,
1463
+ in_dim=64,
1464
+ mlp_ratio=4,
1465
+ drop_path_rate=0.2,
1466
+ sr_ratio=[1, 1, [2, 1], 1],
1467
+ use_swiglu=False,
1468
+ yolo_arch=True,
1469
+ shuffle_down=False,
1470
+ conv_base=True,
1471
+ use_neck=True,
1472
+ full_features_head_dim=512,
1473
+ neck_start_stage=2,
1474
+ **kwargs)
1475
+ if pretrained:
1476
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1477
+ return model
1478
+
1479
+ #84.87
1480
+ @register_model
1481
+ def fastervit2_large(pretrained=False, **kwargs):
1482
+ model = FasterViT(depths=[3, 3, 5, 5],
1483
+ num_heads=[2, 4, 8, 16],
1484
+ window_size=[8, 8, [7, 7], 7],
1485
+ dim=128+64,
1486
+ in_dim=64,
1487
+ mlp_ratio=4,
1488
+ drop_path_rate=0.3,
1489
+ sr_ratio=[1, 1, [2, 1], 1],
1490
+ use_swiglu=False,
1491
+ yolo_arch=False,
1492
+ shuffle_down=False,
1493
+ cpb_mlp_hidden=64,
1494
+ conv_base=True,
1495
+ **kwargs)
1496
+ if pretrained:
1497
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1498
+ return model
1499
+
1500
+ @register_model
1501
+ def fastervit2_large_fullres(pretrained=False, **kwargs):
1502
+ model = FasterViT(
1503
+ depths=[3, 3, 5, 5],
1504
+ num_heads=[2, 4, 8, 16],
1505
+ window_size=[None, None, [7, 7], 7],
1506
+ dim=192,
1507
+ in_dim=64,
1508
+ mlp_ratio=4,
1509
+ drop_path_rate=0.0,
1510
+ sr_ratio=[1, 1, [2, 1], 1],
1511
+ use_swiglu=False,
1512
+ yolo_arch=True,
1513
+ shuffle_down=False,
1514
+ conv_base=True,
1515
+ use_neck=True,
1516
+ full_features_head_dim=1536,
1517
+ neck_start_stage=2,
1518
+ **kwargs,
1519
+ )
1520
+ if pretrained:
1521
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1522
+ return model
1523
+
1524
+
1525
+ @register_model
1526
+ def fastervit2_large_fullres_ws8(pretrained=False, **kwargs):
1527
+ model = FasterViT(
1528
+ depths=[3, 3, 5, 5],
1529
+ num_heads=[2, 4, 8, 16],
1530
+ window_size=[None, None, [8, 8], 8],
1531
+ dim=192,
1532
+ in_dim=64,
1533
+ mlp_ratio=4,
1534
+ drop_path_rate=0.0,
1535
+ sr_ratio=[1, 1, [2, 1], 1],
1536
+ use_swiglu=False,
1537
+ yolo_arch=True,
1538
+ shuffle_down=False,
1539
+ conv_base=True,
1540
+ use_neck=True,
1541
+ full_features_head_dim=1536,
1542
+ neck_start_stage=2,
1543
+ **kwargs,
1544
+ )
1545
+ if pretrained:
1546
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1547
+ return model
1548
+
1549
+
1550
+ @register_model
1551
+ def fastervit2_large_fullres_ws16(pretrained=False, **kwargs):
1552
+ model = FasterViT(
1553
+ depths=[3, 3, 5, 5],
1554
+ num_heads=[2, 4, 8, 16],
1555
+ window_size=[None, None, [16, 16], 16],
1556
+ dim=192,
1557
+ in_dim=64,
1558
+ mlp_ratio=4,
1559
+ drop_path_rate=0.0,
1560
+ sr_ratio=[1, 1, [2, 1], 1],
1561
+ use_swiglu=False,
1562
+ yolo_arch=True,
1563
+ shuffle_down=False,
1564
+ conv_base=True,
1565
+ use_neck=True,
1566
+ full_features_head_dim=1536,
1567
+ neck_start_stage=2,
1568
+ **kwargs,
1569
+ )
1570
+ if pretrained:
1571
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1572
+ return model
1573
+
1574
+
1575
+ @register_model
1576
+ def fastervit2_large_fullres_ws32(pretrained=False, **kwargs):
1577
+ model = FasterViT(
1578
+ depths=[3, 3, 5, 5],
1579
+ num_heads=[2, 4, 8, 16],
1580
+ window_size=[None, None, [32, 32], 32],
1581
+ dim=192,
1582
+ in_dim=64,
1583
+ mlp_ratio=4,
1584
+ drop_path_rate=0.0,
1585
+ sr_ratio=[1, 1, [2, 1], 1],
1586
+ use_swiglu=False,
1587
+ yolo_arch=True,
1588
+ shuffle_down=False,
1589
+ conv_base=True,
1590
+ use_neck=True,
1591
+ full_features_head_dim=1536,
1592
+ neck_start_stage=2,
1593
+ **kwargs,
1594
+ )
1595
+ if pretrained:
1596
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1597
+ return model
1598
+
1599
+ #85.23% top1
1600
+ @register_model
1601
+ def fastervit2_xlarge(pretrained=False, **kwargs):
1602
+ model = FasterViT(depths=[3, 3, 5, 5],
1603
+ num_heads=[2, 4, 8, 16],
1604
+ window_size=[8, 8, [7, 7], 7],
1605
+ dim=128+128+64,
1606
+ in_dim=64,
1607
+ mlp_ratio=4,
1608
+ drop_path_rate=0.4,
1609
+ sr_ratio=[1, 1, [2, 1], 1],
1610
+ use_swiglu=False,
1611
+ yolo_arch=False,
1612
+ shuffle_down=False,
1613
+ cpb_mlp_hidden=64,
1614
+ **kwargs)
1615
+ if pretrained:
1616
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1617
+ return model
1618
+
1619
+ @register_model
1620
+ def fastervit2_huge(pretrained=False, **kwargs):
1621
+ model = FasterViT(depths=[3, 3, 5, 5],
1622
+ num_heads=[2, 4, 8, 16],
1623
+ window_size=[8, 8, [7, 7], 7],
1624
+ dim=128+128+128+64,
1625
+ in_dim=64,
1626
+ mlp_ratio=4,
1627
+ drop_path_rate=0.2,
1628
+ sr_ratio=[1, 1, [2, 1], 1],
1629
+ use_swiglu=False,
1630
+ yolo_arch=True,
1631
+ shuffle_down=False,
1632
+ **kwargs)
1633
+ if pretrained:
1634
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1635
+ return model
1636
+
1637
+
1638
+ # 81.61
1639
+ @register_model
1640
+ def fastervit2_xtiny(pretrained=False, **kwargs): #,
1641
+ model = FasterViT(depths=[1, 3, 4, 5],
1642
+ num_heads=[2, 4, 8, 16],
1643
+ window_size=[8, 8, [7, 7], 7],
1644
+ dim=64,
1645
+ in_dim=64,
1646
+ mlp_ratio=4,
1647
+ drop_path_rate=0.1,
1648
+ sr_ratio=[1, 1, [2, 1], 1],
1649
+ use_swiglu=False,
1650
+ downsample_shuffle=False,
1651
+ yolo_arch=True,
1652
+ shuffle_down=False,
1653
+ cpb_mlp_hidden=64,
1654
+ **kwargs)
1655
+ if pretrained:
1656
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1657
+ return model
1658
+
1659
+
1660
+ # 80.19
1661
+ @register_model
1662
+ def fastervit2_xxtiny(pretrained=False, **kwargs): #,
1663
+ model = FasterViT(depths=[1, 3, 4, 5],
1664
+ num_heads=[2, 4, 8, 16],
1665
+ window_size=[8, 8, [7, 7], 7],
1666
+ dim=48,
1667
+ in_dim=64,
1668
+ mlp_ratio=4,
1669
+ drop_path_rate=0.05,
1670
+ sr_ratio=[1, 1, [2, 1], 1],
1671
+ use_swiglu=False,
1672
+ downsample_shuffle=False,
1673
+ yolo_arch=True,
1674
+ shuffle_down=False,
1675
+ cpb_mlp_hidden=64,
1676
+ **kwargs)
1677
+ if pretrained:
1678
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1679
+ return model
1680
+
1681
+ @register_model
1682
+ # 77.0
1683
+ def fastervit2_xxxtiny(pretrained=False, **kwargs): #,
1684
+ model = FasterViT(depths=[1, 3, 4, 5],
1685
+ num_heads=[2, 4, 8, 16],
1686
+ window_size=[8, 8, [7, 7], 7],
1687
+ dim=32,
1688
+ in_dim=32,
1689
+ mlp_ratio=4,
1690
+ drop_path_rate=0.0,
1691
+ sr_ratio=[1, 1, [2, 1], 1],
1692
+ use_swiglu=False,
1693
+ downsample_shuffle=False,
1694
+ yolo_arch=True,
1695
+ shuffle_down=False,
1696
+ cpb_mlp_hidden=64,
1697
+ **kwargs)
1698
+ if pretrained:
1699
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1700
+ return model
1701
+
1702
+
1703
+ @register_model
1704
+ def fastervit2_xxxtiny_fullres(pretrained=False, **kwargs):
1705
+ model = FasterViT(depths=[1, 3, 4, 5],
1706
+ num_heads=[2, 4, 8, 16],
1707
+ window_size=[8, 8, [7, 7], 7],
1708
+ dim=32,
1709
+ in_dim=32,
1710
+ mlp_ratio=4,
1711
+ drop_path_rate=0.0,
1712
+ sr_ratio=[1, 1, [2, 1], 1],
1713
+ use_swiglu=False,
1714
+ downsample_shuffle=False,
1715
+ yolo_arch=True,
1716
+ shuffle_down=False,
1717
+ cpb_mlp_hidden=64,
1718
+ use_neck=True,
1719
+ full_features_head_dim=128,
1720
+ neck_start_stage=1,
1721
+ conv_groups_ratio = 1,
1722
+ **kwargs)
1723
+ if pretrained:
1724
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1725
+ return model
1726
+
1727
+ @register_model
1728
+ def eradio_xxxtiny(pretrained=False, **kwargs): # ,
1729
+ model = FasterViT(
1730
+ depths=[1, 3, 4, 5],
1731
+ num_heads=[2, 4, 8, 16],
1732
+ window_size=[None, None, [16, 16], 16],
1733
+ dim=32,
1734
+ in_dim=32,
1735
+ mlp_ratio=4,
1736
+ drop_path_rate=0.0,
1737
+ sr_ratio=[1, 1, [2, 1], 1],
1738
+ use_swiglu=False,
1739
+ yolo_arch=True,
1740
+ shuffle_down=False,
1741
+ conv_base=True,
1742
+ use_neck=True,
1743
+ full_features_head_dim=256,
1744
+ neck_start_stage=2,
1745
+ **kwargs,
1746
+ )
1747
+ if pretrained:
1748
+ model.load_state_dict(torch.load(pretrained))
1749
+ return model
1750
+
1751
+ @register_model
1752
+ def eradio_xxxtiny_8x_ws12(pretrained=False, **kwargs):
1753
+ model = FasterViT(depths=[1, 3, 4, 5],
1754
+ num_heads=[2, 4, 8, 16],
1755
+ window_size=[None, None, [12, 12], 12],
1756
+ dim=32,
1757
+ in_dim=32,
1758
+ mlp_ratio=4,
1759
+ drop_path_rate=0.0,
1760
+ sr_ratio=[1, 1, [2, 1], 1],
1761
+ use_swiglu=False,
1762
+ downsample_shuffle=False,
1763
+ yolo_arch=True,
1764
+ shuffle_down=False,
1765
+ cpb_mlp_hidden=64,
1766
+ use_neck=True,
1767
+ full_features_head_dim=256,
1768
+ neck_start_stage=2,
1769
+ conv_groups_ratio = 1,
1770
+ **kwargs)
1771
+ if pretrained:
1772
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1773
+ return model
1774
+
1775
+
1776
+ @register_model
1777
+ def eradio_xxxtiny_8x_ws16(pretrained=False, **kwargs):
1778
+ model = FasterViT(depths=[1, 3, 4, 5],
1779
+ num_heads=[2, 4, 8, 16],
1780
+ window_size=[None, None, [16, 16], 16],
1781
+ dim=32,
1782
+ in_dim=32,
1783
+ mlp_ratio=4,
1784
+ drop_path_rate=0.0,
1785
+ sr_ratio=[1, 1, [2, 1], 1],
1786
+ use_swiglu=False,
1787
+ downsample_shuffle=False,
1788
+ yolo_arch=True,
1789
+ shuffle_down=False,
1790
+ cpb_mlp_hidden=64,
1791
+ use_neck=True,
1792
+ full_features_head_dim=256,
1793
+ neck_start_stage=1,
1794
+ conv_groups_ratio = 1,
1795
+ **kwargs)
1796
+ if pretrained:
1797
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1798
+ return model
1799
+
1800
+ @register_model
1801
+ def eradio(pretrained=False, **kwargs):
1802
+ return fastervit2_large_fullres_ws16(pretrained=pretrained, **kwargs)
extra_timm_models.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ from torch import nn
10
+
11
+ from timm.models import register_model
12
+ from timm.models.vision_transformer import VisionTransformer, _create_vision_transformer, Mlp
13
+
14
+
15
+ @register_model
16
+ def vit_tiny_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
17
+ """ ViT-Tiny (Vit-Ti/16)
18
+ """
19
+ model_args = dict(patch_size=14, embed_dim=192, depth=12, num_heads=3)
20
+ model = _create_vision_transformer('vit_tiny_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
21
+ return model
22
+
23
+
24
+ @register_model
25
+ def vit_small_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
26
+ """ ViT-Small (ViT-S/16)
27
+ """
28
+ model_args = dict(patch_size=14, embed_dim=384, depth=12, num_heads=6)
29
+ model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
30
+ return model
31
+
32
+
33
+ @register_model
34
+ def vit_base_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
35
+ """ ViT-Base (ViT-B/14) from original paper (https://arxiv.org/abs/2010.11929).
36
+ ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
37
+ """
38
+ model_args = dict(patch_size=14, embed_dim=768, depth=12, num_heads=12)
39
+ model = _create_vision_transformer('vit_base_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
40
+ return model
41
+
42
+
43
+ @register_model
44
+ def vit_huge_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
45
+ """ ViT-Huge model (ViT-H/16) from original paper (https://arxiv.org/abs/2010.11929).
46
+ """
47
+ model_args = dict(patch_size=16, embed_dim=1280, depth=32, num_heads=16)
48
+ if pretrained:
49
+ # There is no pretrained version of ViT-H/16, but we can adapt a ViT-H/14 for this purpose
50
+ model = _create_vision_transformer('vit_huge_patch14_clip_336', pretrained=True, **dict(model_args, pre_norm=True, **kwargs))
51
+ else:
52
+ model = _create_vision_transformer('vit_huge_patch16_224', pretrained=False, **dict(model_args, **kwargs))
53
+ return model
54
+
55
+
56
+ @register_model
57
+ def vit_huge_patch16_224_mlpnorm(pretrained=False, **kwargs) -> VisionTransformer:
58
+ """ ViT-Huge model (ViT-H/16) from original paper (https://arxiv.org/abs/2010.11929).
59
+ """
60
+ model = vit_huge_patch16_224(pretrained=pretrained, **kwargs)
61
+
62
+ for m in model.modules():
63
+ if isinstance(m, Mlp) and not isinstance(m.norm, nn.LayerNorm):
64
+ m.norm = nn.LayerNorm(m.fc1.out_features)
65
+
66
+ return model
hf_model.py CHANGED
@@ -1,4 +1,4 @@
1
- # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
2
  #
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
  # you may not use this file except in compliance with the License.
@@ -12,33 +12,55 @@
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
  from collections import namedtuple
15
- from typing import Optional
16
 
17
  from timm.models import VisionTransformer
18
  import torch
19
  from transformers import PretrainedConfig, PreTrainedModel
20
 
21
 
22
- from .model import create_model_from_args
23
- from .model import RADIOModel as RADIOModelBase
 
 
 
24
  from .input_conditioner import get_default_conditioner, InputConditioner
25
 
26
 
 
 
 
 
27
  class RADIOConfig(PretrainedConfig):
28
  """Pretrained Hugging Face configuration for RADIO models."""
29
 
30
  def __init__(
31
  self,
32
  args: Optional[dict] = None,
33
- version: Optional[str] = "v1",
34
- return_summary: Optional[bool] = True,
35
- return_spatial_features: Optional[bool] = True,
 
 
 
36
  **kwargs,
37
  ):
38
  self.args = args
 
 
 
 
 
 
39
  self.version = version
40
- self.return_summary = return_summary
41
- self.return_spatial_features = return_spatial_features
 
 
 
 
 
 
42
  super().__init__(**kwargs)
43
 
44
 
@@ -57,19 +79,48 @@ class RADIOModel(PreTrainedModel):
57
  RADIOArgs = namedtuple("RADIOArgs", config.args.keys())
58
  args = RADIOArgs(**config.args)
59
  self.config = config
 
60
  model = create_model_from_args(args)
61
  input_conditioner: InputConditioner = get_default_conditioner()
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  self.radio_model = RADIOModelBase(
64
  model,
65
  input_conditioner,
66
- config.return_summary,
67
- config.return_spatial_features,
 
 
 
 
68
  )
69
 
70
  @property
71
  def model(self) -> VisionTransformer:
72
  return self.radio_model.model
73
 
 
 
 
 
74
  def forward(self, x: torch.Tensor):
75
  return self.radio_model.forward(x)
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
  #
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
  # you may not use this file except in compliance with the License.
 
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
  from collections import namedtuple
15
+ from typing import Optional, List, Union
16
 
17
  from timm.models import VisionTransformer
18
  import torch
19
  from transformers import PretrainedConfig, PreTrainedModel
20
 
21
 
22
+ from .common import RESOURCE_MAP, DEFAULT_VERSION
23
+ # Force import of eradio_model in order to register it.
24
+ from .eradio_model import eradio
25
+ from .radio_model import create_model_from_args
26
+ from .radio_model import RADIOModel as RADIOModelBase, Resolution
27
  from .input_conditioner import get_default_conditioner, InputConditioner
28
 
29
 
30
+ # Register extra models
31
+ from .extra_timm_models import *
32
+
33
+
34
  class RADIOConfig(PretrainedConfig):
35
  """Pretrained Hugging Face configuration for RADIO models."""
36
 
37
  def __init__(
38
  self,
39
  args: Optional[dict] = None,
40
+ version: Optional[str] = DEFAULT_VERSION,
41
+ patch_size: Optional[int] = None,
42
+ max_resolution: Optional[int] = None,
43
+ preferred_resolution: Optional[Resolution] = None,
44
+ adaptor_names: Union[str, List[str]] = None,
45
+ vitdet_window_size: Optional[int] = None,
46
  **kwargs,
47
  ):
48
  self.args = args
49
+ for field in ["dtype", "amp_dtype"]:
50
+ if self.args is not None and field in self.args:
51
+ # Convert to a string in order to make it serializable.
52
+ # For example for torch.float32 we will store "float32",
53
+ # for "bfloat16" we will store "bfloat16".
54
+ self.args[field] = str(args[field]).split(".")[-1]
55
  self.version = version
56
+ resource = RESOURCE_MAP[version]
57
+ self.patch_size = patch_size or resource.patch_size
58
+ self.max_resolution = max_resolution or resource.max_resolution
59
+ self.preferred_resolution = (
60
+ preferred_resolution or resource.preferred_resolution
61
+ )
62
+ self.adaptor_names = adaptor_names
63
+ self.vitdet_window_size = vitdet_window_size
64
  super().__init__(**kwargs)
65
 
66
 
 
79
  RADIOArgs = namedtuple("RADIOArgs", config.args.keys())
80
  args = RADIOArgs(**config.args)
81
  self.config = config
82
+
83
  model = create_model_from_args(args)
84
  input_conditioner: InputConditioner = get_default_conditioner()
85
 
86
+ dtype = getattr(args, "dtype", torch.float32)
87
+ if isinstance(dtype, str):
88
+ # Convert the dtype's string representation back to a dtype.
89
+ dtype = getattr(torch, dtype)
90
+ model.to(dtype=dtype)
91
+ input_conditioner.dtype = dtype
92
+
93
+ summary_idxs = torch.tensor(
94
+ [i for i, t in enumerate(args.teachers) if t.get("use_summary", True)],
95
+ dtype=torch.int64,
96
+ )
97
+
98
+ adaptor_names = config.adaptor_names
99
+ if adaptor_names is not None:
100
+ raise NotImplementedError(
101
+ f"Adaptors are not yet supported in Hugging Face models. Adaptor names: {adaptor_names}"
102
+ )
103
+
104
+ adaptors = dict()
105
+
106
  self.radio_model = RADIOModelBase(
107
  model,
108
  input_conditioner,
109
+ summary_idxs=summary_idxs,
110
+ patch_size=config.patch_size,
111
+ max_resolution=config.max_resolution,
112
+ window_size=config.vitdet_window_size,
113
+ preferred_resolution=config.preferred_resolution,
114
+ adaptors=adaptors,
115
  )
116
 
117
  @property
118
  def model(self) -> VisionTransformer:
119
  return self.radio_model.model
120
 
121
+ @property
122
+ def input_conditioner(self) -> InputConditioner:
123
+ return self.radio_model.input_conditioner
124
+
125
  def forward(self, x: torch.Tensor):
126
  return self.radio_model.forward(x)
input_conditioner.py CHANGED
@@ -1,4 +1,4 @@
1
- # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
2
  #
3
  # NVIDIA CORPORATION and its licensors retain all intellectual property
4
  # and proprietary rights in and to this software, related documentation
@@ -19,20 +19,20 @@ class InputConditioner(nn.Module):
19
  input_scale: float,
20
  norm_mean: norm_t,
21
  norm_std: norm_t,
22
- dtype: torch.dtype = torch.float32,
23
  ):
24
  super().__init__()
25
 
26
  self.dtype = dtype
27
 
28
- # self.input_scale = input_scale
29
  self.register_buffer("norm_mean", _to_tensor(norm_mean) / input_scale)
30
  self.register_buffer("norm_std", _to_tensor(norm_std) / input_scale)
31
 
32
  def forward(self, x: torch.Tensor):
33
- # x = x * self.input_scale
34
  y = (x - self.norm_mean) / self.norm_std
35
- return y.to(self.dtype)
 
 
36
 
37
 
38
  def get_default_conditioner():
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
  #
3
  # NVIDIA CORPORATION and its licensors retain all intellectual property
4
  # and proprietary rights in and to this software, related documentation
 
19
  input_scale: float,
20
  norm_mean: norm_t,
21
  norm_std: norm_t,
22
+ dtype: torch.dtype = None,
23
  ):
24
  super().__init__()
25
 
26
  self.dtype = dtype
27
 
 
28
  self.register_buffer("norm_mean", _to_tensor(norm_mean) / input_scale)
29
  self.register_buffer("norm_std", _to_tensor(norm_std) / input_scale)
30
 
31
  def forward(self, x: torch.Tensor):
 
32
  y = (x - self.norm_mean) / self.norm_std
33
+ if self.dtype is not None:
34
+ y = y.to(self.dtype)
35
+ return y
36
 
37
 
38
  def get_default_conditioner():
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df75c4351ef558af885acbf0d21ad53fd273e3720b5ae3d1e7d4a23df1ca9ed1
3
+ size 1306581088
radio_model.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from typing import Optional, Callable, Union, Tuple, Any, Dict, NamedTuple
9
+
10
+ import torch
11
+ from torch import nn
12
+
13
+ from timm.models import create_model, VisionTransformer
14
+
15
+ from .enable_cpe_support import enable_cpe
16
+ from .input_conditioner import InputConditioner
17
+ # Register extra models
18
+ from . import extra_timm_models
19
+ from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput
20
+ from . import eradio_model
21
+
22
+
23
+ class Resolution(NamedTuple):
24
+ height: int
25
+ width: int
26
+
27
+
28
+ class RADIOModel(nn.Module):
29
+ def __init__(
30
+ self,
31
+ model: nn.Module,
32
+ input_conditioner: InputConditioner,
33
+ patch_size: int,
34
+ max_resolution: int,
35
+ preferred_resolution: Resolution,
36
+ summary_idxs: Optional[torch.Tensor] = None,
37
+ window_size: int = None,
38
+ adaptors: Dict[str, AdaptorBase] = None,
39
+ ):
40
+ super().__init__()
41
+
42
+ self.model = model
43
+ self.input_conditioner = input_conditioner
44
+ if summary_idxs is not None:
45
+ self.register_buffer('summary_idxs', summary_idxs)
46
+ else:
47
+ self.summary_idxs = None
48
+
49
+ self._preferred_resolution = preferred_resolution
50
+ self._patch_size = patch_size
51
+ self._max_resolution = max_resolution
52
+ self._window_size = window_size
53
+
54
+ adaptors = adaptors or dict()
55
+ self.adaptors = nn.ModuleDict(adaptors)
56
+
57
+ @property
58
+ def num_summary_tokens(self) -> int:
59
+ patch_gen = getattr(self.model, "patch_generator", None)
60
+ if patch_gen is not None:
61
+ return patch_gen.num_skip
62
+ elif self.model.global_pool == 'avg':
63
+ return 0
64
+ return 1
65
+
66
+ @property
67
+ def patch_size(self) -> int:
68
+ return self._patch_size
69
+
70
+ @property
71
+ def max_resolution(self) -> int:
72
+ return self._max_resolution
73
+
74
+ @property
75
+ def preferred_resolution(self) -> Resolution:
76
+ return self._preferred_resolution
77
+
78
+ @property
79
+ def window_size(self) -> int:
80
+ return self._window_size
81
+
82
+ @property
83
+ def min_resolution_step(self) -> int:
84
+ res = self.patch_size
85
+ if self.window_size is not None:
86
+ res *= self.window_size
87
+ return res
88
+
89
+ def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]:
90
+ ret = self.input_conditioner
91
+ self.input_conditioner = nn.Identity()
92
+ return ret
93
+
94
+ def get_nearest_supported_resolution(self, height: int, width: int) -> Resolution:
95
+ height = int(round(height / self.min_resolution_step) * self.min_resolution_step)
96
+ width = int(round(width / self.min_resolution_step) * self.min_resolution_step)
97
+
98
+ height = max(height, self.min_resolution_step)
99
+ width = max(width, self.min_resolution_step)
100
+
101
+ return Resolution(height=height, width=width)
102
+
103
+ def switch_to_deploy(self):
104
+ fn = getattr(self.model, 'switch_to_deploy', None)
105
+ if fn is not None:
106
+ fn()
107
+
108
+ def forward(self, x: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
109
+ x = self.input_conditioner(x)
110
+ y = self.model.forward_features(x)
111
+
112
+ if isinstance(self.model, VisionTransformer):
113
+ patch_gen = getattr(self.model, "patch_generator", None)
114
+ if patch_gen is not None:
115
+ all_summary = y[:, : patch_gen.num_cls_tokens]
116
+ if self.summary_idxs is not None:
117
+ bb_summary = all_summary[:, self.summary_idxs]
118
+ else:
119
+ bb_summary = all_summary
120
+ all_feat = y[:, patch_gen.num_skip :]
121
+ elif self.model.global_pool == "avg":
122
+ all_summary = y[:, self.model.num_prefix_tokens :].mean(dim=1)
123
+ bb_summary = all_summary
124
+ all_feat = y
125
+ else:
126
+ all_summary = y[:, 0]
127
+ bb_summary = all_summary
128
+ all_feat = y[:, 1:]
129
+ elif isinstance(self.model, eradio_model.FasterViT):
130
+ _, f = y
131
+ all_feat = f.flatten(2).transpose(1, 2)
132
+ all_summary = all_feat.mean(dim=1)
133
+ bb_summary = all_summary
134
+ elif isinstance(y, (list, tuple)):
135
+ all_summary, all_feat = y
136
+ bb_summary = all_summary
137
+ else:
138
+ raise ValueError("Unsupported model type")
139
+
140
+ all_feat = all_feat.float()
141
+ ret = RadioOutput(bb_summary.flatten(1), all_feat).to(torch.float32)
142
+ if self.adaptors:
143
+ ret = dict(backbone=ret)
144
+ for name, adaptor in self.adaptors.items():
145
+ if all_summary.ndim == 3:
146
+ summary = all_summary[:, adaptor.head_idx]
147
+ else:
148
+ summary = all_summary
149
+ ada_input = AdaptorInput(images=x, summary=summary.float(), features=all_feat)
150
+ v = adaptor(ada_input).to(torch.float32)
151
+ ret[name] = v
152
+
153
+ return ret
154
+
155
+
156
+ def create_model_from_args(args) -> nn.Module:
157
+ in_chans = 3
158
+ if args.in_chans is not None:
159
+ in_chans = args.in_chans
160
+ elif args.input_size is not None:
161
+ in_chans = args.input_size[0]
162
+
163
+ # Skip weight initialization unless it's explicitly requested.
164
+ weight_init = args.model_kwargs.pop("weight_init", "skip")
165
+
166
+ model = create_model(
167
+ args.model,
168
+ pretrained=args.pretrained,
169
+ in_chans=in_chans,
170
+ num_classes=args.num_classes,
171
+ drop_rate=args.drop,
172
+ drop_path_rate=args.drop_path,
173
+ drop_block_rate=args.drop_block,
174
+ global_pool=args.gp,
175
+ bn_momentum=args.bn_momentum,
176
+ bn_eps=args.bn_eps,
177
+ scriptable=args.torchscript,
178
+ checkpoint_path=args.initial_checkpoint,
179
+ weight_init=weight_init,
180
+ **args.model_kwargs,
181
+ )
182
+
183
+ assert (
184
+ not args.cls_token_per_teacher or args.cpe_max_size is not None
185
+ ), "CPE must be enabled for multiple CLS tokens!"
186
+
187
+ if args.cpe_max_size is not None:
188
+ enable_cpe(
189
+ model,
190
+ args.cpe_max_size,
191
+ num_cls_tokens=len(args.teachers) if args.cls_token_per_teacher else 1,
192
+ register_multiple=args.register_multiple,
193
+ )
194
+
195
+ return model
vit_patch_generator.py CHANGED
@@ -1,4 +1,4 @@
1
- # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
2
  #
3
  # NVIDIA CORPORATION and its licensors retain all intellectual property
4
  # and proprietary rights in and to this software, related documentation
@@ -224,12 +224,12 @@ class ViTPatchGenerator(nn.Module):
224
  grid_xy.mul_(2).sub_(1)
225
 
226
  pos_embed = F.grid_sample(
227
- pos_embed.expand(batch_size, -1, -1, -1),
228
  grid=grid_xy,
229
  mode='bilinear',
230
  padding_mode='zeros',
231
  align_corners=True,
232
- )
233
  else:
234
  # i_rows, i_cols = input_dims
235
  # p_rows, p_cols = pos_embed.shape[2:]
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
  #
3
  # NVIDIA CORPORATION and its licensors retain all intellectual property
4
  # and proprietary rights in and to this software, related documentation
 
224
  grid_xy.mul_(2).sub_(1)
225
 
226
  pos_embed = F.grid_sample(
227
+ pos_embed.float().expand(batch_size, -1, -1, -1),
228
  grid=grid_xy,
229
  mode='bilinear',
230
  padding_mode='zeros',
231
  align_corners=True,
232
+ ).to(pos_embed.dtype)
233
  else:
234
  # i_rows, i_cols = input_dims
235
  # p_rows, p_cols = pos_embed.shape[2:]