v2.3
Browse files- .gitignore +136 -6
- README.md +41 -34
- {alias_free_cuda β alias_free_activation/cuda}/__init__.py +0 -0
- {alias_free_cuda β alias_free_activation/cuda}/activation1d.py +37 -23
- {alias_free_cuda β alias_free_activation/cuda}/anti_alias_activation.cpp +4 -29
- alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- {alias_free_cuda β alias_free_activation/cuda}/compat.h +0 -2
- {alias_free_cuda β alias_free_activation/cuda}/load.py +40 -26
- alias_free_activation/cuda/type_shim.h +92 -0
- {alias_free_torch β alias_free_activation/torch}/__init__.py +1 -1
- {alias_free_torch β alias_free_activation/torch}/act.py +10 -8
- {alias_free_torch β alias_free_activation/torch}/filter.py +37 -31
- {alias_free_torch β alias_free_activation/torch}/resample.py +25 -16
- alias_free_cuda/anti_alias_activation_cuda.cu +0 -314
- alias_free_cuda/test_activation.py +0 -55
- alias_free_cuda/test_activation_snake_beta.py +0 -55
- alias_free_cuda/type_shim.h +0 -97
- bigvgan.py +286 -160
- meldataset.py +318 -30
- nv-modelcard++/.gitkeep +0 -0
- nv-modelcard++/bias.md +4 -4
- nv-modelcard++/explainability.md +13 -13
- nv-modelcard++/overview.md +64 -52
- nv-modelcard++/privacy.md +14 -14
- nv-modelcard++/safety.md +6 -6
- utils.py +34 -15
.gitignore
CHANGED
@@ -1,7 +1,137 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
*/__pycache__/
|
4 |
-
alias_free_cuda/build/
|
5 |
-
.DS_Store
|
6 |
exp/
|
7 |
-
tmp/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# BigVGAN
|
2 |
+
alias_free_activation/cuda/build/
|
|
|
|
|
|
|
3 |
exp/
|
4 |
+
tmp/
|
5 |
+
|
6 |
+
# VSCode configs
|
7 |
+
.vscode/
|
8 |
+
|
9 |
+
# Byte-compiled / optimized / DLL files
|
10 |
+
__pycache__/
|
11 |
+
*.py[cod]
|
12 |
+
*$py.class
|
13 |
+
|
14 |
+
# C extensions
|
15 |
+
*.so
|
16 |
+
|
17 |
+
# Distribution / packaging
|
18 |
+
.Python
|
19 |
+
build/
|
20 |
+
develop-eggs/
|
21 |
+
dist/
|
22 |
+
downloads/
|
23 |
+
eggs/
|
24 |
+
.eggs/
|
25 |
+
lib/
|
26 |
+
lib64/
|
27 |
+
parts/
|
28 |
+
sdist/
|
29 |
+
var/
|
30 |
+
wheels/
|
31 |
+
share/python-wheels/
|
32 |
+
*.egg-info/
|
33 |
+
.installed.cfg
|
34 |
+
*.egg
|
35 |
+
MANIFEST
|
36 |
+
|
37 |
+
# PyInstaller
|
38 |
+
# Usually these files are written by a python script from a template
|
39 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
40 |
+
*.manifest
|
41 |
+
*.spec
|
42 |
+
|
43 |
+
# Installer logs
|
44 |
+
pip-log.txt
|
45 |
+
pip-delete-this-directory.txt
|
46 |
+
|
47 |
+
# Unit test / coverage reports
|
48 |
+
htmlcov/
|
49 |
+
.tox/
|
50 |
+
.nox/
|
51 |
+
.coverage
|
52 |
+
.coverage.*
|
53 |
+
.cache
|
54 |
+
nosetests.xml
|
55 |
+
coverage.xml
|
56 |
+
*.cover
|
57 |
+
*.py,cover
|
58 |
+
.hypothesis/
|
59 |
+
.pytest_cache/
|
60 |
+
cover/
|
61 |
+
|
62 |
+
# Translations
|
63 |
+
*.mo
|
64 |
+
*.pot
|
65 |
+
|
66 |
+
# Django stuff:
|
67 |
+
*.log
|
68 |
+
local_settings.py
|
69 |
+
db.sqlite3
|
70 |
+
db.sqlite3-journal
|
71 |
+
|
72 |
+
# Flask stuff:
|
73 |
+
instance/
|
74 |
+
.webassets-cache
|
75 |
+
|
76 |
+
# Scrapy stuff:
|
77 |
+
.scrapy
|
78 |
+
|
79 |
+
# Sphinx documentation
|
80 |
+
docs/_build/
|
81 |
+
|
82 |
+
# PyBuilder
|
83 |
+
.pybuilder/
|
84 |
+
target/
|
85 |
+
|
86 |
+
# Jupyter Notebook
|
87 |
+
.ipynb_checkpoints
|
88 |
+
|
89 |
+
# IPython
|
90 |
+
profile_default/
|
91 |
+
ipython_config.py
|
92 |
+
|
93 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
94 |
+
__pypackages__/
|
95 |
+
|
96 |
+
# Celery stuff
|
97 |
+
celerybeat-schedule
|
98 |
+
celerybeat.pid
|
99 |
+
|
100 |
+
# SageMath parsed files
|
101 |
+
*.sage.py
|
102 |
+
|
103 |
+
# Environments
|
104 |
+
.env
|
105 |
+
.venv
|
106 |
+
env/
|
107 |
+
venv/
|
108 |
+
ENV/
|
109 |
+
env.bak/
|
110 |
+
venv.bak/
|
111 |
+
|
112 |
+
# Spyder project settings
|
113 |
+
.spyderproject
|
114 |
+
.spyproject
|
115 |
+
|
116 |
+
# Rope project settings
|
117 |
+
.ropeproject
|
118 |
+
|
119 |
+
# mkdocs documentation
|
120 |
+
/site
|
121 |
+
|
122 |
+
# mypy
|
123 |
+
.mypy_cache/
|
124 |
+
.dmypy.json
|
125 |
+
dmypy.json
|
126 |
+
|
127 |
+
# Pyre type checker
|
128 |
+
.pyre/
|
129 |
+
|
130 |
+
# pytype static type analyzer
|
131 |
+
.pytype/
|
132 |
+
|
133 |
+
# Cython debug symbols
|
134 |
+
cython_debug/
|
135 |
+
|
136 |
+
# PyCharm
|
137 |
+
.idea/
|
README.md
CHANGED
@@ -10,22 +10,28 @@ pipeline_tag: audio-to-audio
|
|
10 |
|
11 |
## BigVGAN: A Universal Neural Vocoder with Large-Scale Training
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
**Paper**: https://arxiv.org/abs/2206.04658
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
22 |
|
23 |
## News
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
## Installation
|
31 |
This repository contains pretrained BigVGAN checkpoints with easy access to inference and additional `huggingface_hub` support.
|
@@ -39,26 +45,26 @@ git clone https://huggingface.co/nvidia/bigvgan_22khz_80band
|
|
39 |
|
40 |
## Usage
|
41 |
|
42 |
-
Below example describes how you can use: load the pretrained BigVGAN generator, compute mel spectrogram from input waveform, and generate synthesized waveform using the mel spectrogram as the model's input.
|
43 |
|
44 |
```python
|
45 |
device = 'cuda'
|
46 |
|
47 |
import torch
|
48 |
import bigvgan
|
|
|
|
|
49 |
|
50 |
-
# instantiate the model
|
51 |
-
model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_22khz_80band')
|
52 |
|
53 |
# remove weight norm in the model and set to eval mode
|
54 |
model.remove_weight_norm()
|
55 |
model = model.eval().to(device)
|
56 |
|
57 |
-
import librosa
|
58 |
-
from meldataset import get_mel_spectrogram
|
59 |
-
|
60 |
# load wav file and compute mel spectrogram
|
61 |
-
|
|
|
62 |
wav = torch.FloatTensor(wav).unsqueeze(0) # wav is FloatTensor with shape [B(1), T_time]
|
63 |
|
64 |
# compute mel spectrogram from the ground truth audio
|
@@ -70,7 +76,7 @@ with torch.inference_mode():
|
|
70 |
wav_gen_float = wav_gen.squeeze(0).cpu() # wav_gen is FloatTensor with shape [1, T_time]
|
71 |
|
72 |
# you can convert the generated waveform to 16 bit linear PCM
|
73 |
-
wav_gen_int16 = (wav_gen_float * 32767.0).numpy().astype('int16') # wav_gen is now np.ndarray with int16 dtype
|
74 |
```
|
75 |
|
76 |
## Using Custom CUDA Kernel for Synthesis
|
@@ -81,7 +87,7 @@ import bigvgan
|
|
81 |
model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_22khz_80band', use_cuda_kernel=True)
|
82 |
```
|
83 |
|
84 |
-
When applied for the first time, it builds the kernel using `nvcc` and `ninja`. If the build succeeds, the kernel is saved to `
|
85 |
|
86 |
Please make sure that both are installed in your system and `nvcc` installed in your system matches the version your PyTorch build is using.
|
87 |
|
@@ -89,17 +95,18 @@ For detail, see the official GitHub repository: https://github.com/NVIDIA/BigVGA
|
|
89 |
|
90 |
|
91 |
## Pretrained Models
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|[
|
99 |
-
|[
|
100 |
-
|[
|
101 |
-
|[
|
102 |
-
|[
|
103 |
-
|[
|
104 |
-
|[
|
105 |
-
|[
|
|
|
|
10 |
|
11 |
## BigVGAN: A Universal Neural Vocoder with Large-Scale Training
|
12 |
|
13 |
+
#### Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, Sungroh Yoon
|
|
|
|
|
14 |
|
15 |
+
[[Paper]](https://arxiv.org/abs/2206.04658) - [[Code]](https://github.com/NVIDIA/BigVGAN) - [[Showcase]](https://bigvgan-demo.github.io/) - [[Project Page]](https://research.nvidia.com/labs/adlr/projects/bigvgan/) - [[Weights]](https://huggingface.co/collections/nvidia/bigvgan-66959df3d97fd7d98d97dc9a) - [[Demo]](https://huggingface.co/spaces/nvidia/BigVGAN)
|
16 |
|
17 |
+
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/bigvgan-a-universal-neural-vocoder-with-large/speech-synthesis-on-libritts)](https://paperswithcode.com/sota/speech-synthesis-on-libritts?p=bigvgan-a-universal-neural-vocoder-with-large)
|
18 |
|
19 |
+
<center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800"></center>
|
20 |
|
21 |
## News
|
22 |
+
- **Jul 2024 (v2.3):**
|
23 |
+
- General refactor and code improvements for improved readability.
|
24 |
+
- Fully fused CUDA kernel of anti-alised activation (upsampling + activation + downsampling) with inference speed benchmark.
|
25 |
+
|
26 |
+
- **Jul 2024 (v2.2):** The repository now includes an interactive local demo using gradio.
|
27 |
+
|
28 |
+
- **Jul 2024 (v2.1):** BigVGAN is now integrated with π€ Hugging Face Hub with easy access to inference using pretrained checkpoints. We also provide an interactive demo on Hugging Face Spaces.
|
29 |
+
|
30 |
+
- **Jul 2024 (v2):** We release BigVGAN-v2 along with pretrained checkpoints. Below are the highlights:
|
31 |
+
- Custom CUDA kernel for inference: we provide a fused upsampling + activation kernel written in CUDA for accelerated inference speed. Our test shows 1.5 - 3x faster speed on a single A100 GPU.
|
32 |
+
- Improved discriminator and loss: BigVGAN-v2 is trained using a [multi-scale sub-band CQT discriminator](https://arxiv.org/abs/2311.14957) and a [multi-scale mel spectrogram loss](https://arxiv.org/abs/2306.06546).
|
33 |
+
- Larger training data: BigVGAN-v2 is trained using datasets containing diverse audio types, including speech in multiple languages, environmental sounds, and instruments.
|
34 |
+
- We provide pretrained checkpoints of BigVGAN-v2 using diverse audio configurations, supporting up to 44 kHz sampling rate and 512x upsampling ratio.
|
35 |
|
36 |
## Installation
|
37 |
This repository contains pretrained BigVGAN checkpoints with easy access to inference and additional `huggingface_hub` support.
|
|
|
45 |
|
46 |
## Usage
|
47 |
|
48 |
+
Below example describes how you can use BigVGAN: load the pretrained BigVGAN generator from Hugging Face Hub, compute mel spectrogram from input waveform, and generate synthesized waveform using the mel spectrogram as the model's input.
|
49 |
|
50 |
```python
|
51 |
device = 'cuda'
|
52 |
|
53 |
import torch
|
54 |
import bigvgan
|
55 |
+
import librosa
|
56 |
+
from meldataset import get_mel_spectrogram
|
57 |
|
58 |
+
# instantiate the model. You can optionally set use_cuda_kernel=True for faster inference.
|
59 |
+
model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_22khz_80band', use_cuda_kernel=False)
|
60 |
|
61 |
# remove weight norm in the model and set to eval mode
|
62 |
model.remove_weight_norm()
|
63 |
model = model.eval().to(device)
|
64 |
|
|
|
|
|
|
|
65 |
# load wav file and compute mel spectrogram
|
66 |
+
wav_path = '/path/to/your/audio.wav'
|
67 |
+
wav, sr = librosa.load(wav_path, sr=model.h.sampling_rate, mono=True) # wav is np.ndarray with shape [T_time] and values in [-1, 1]
|
68 |
wav = torch.FloatTensor(wav).unsqueeze(0) # wav is FloatTensor with shape [B(1), T_time]
|
69 |
|
70 |
# compute mel spectrogram from the ground truth audio
|
|
|
76 |
wav_gen_float = wav_gen.squeeze(0).cpu() # wav_gen is FloatTensor with shape [1, T_time]
|
77 |
|
78 |
# you can convert the generated waveform to 16 bit linear PCM
|
79 |
+
wav_gen_int16 = (wav_gen_float * 32767.0).numpy().astype('int16') # wav_gen is now np.ndarray with shape [1, T_time] and int16 dtype
|
80 |
```
|
81 |
|
82 |
## Using Custom CUDA Kernel for Synthesis
|
|
|
87 |
model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_22khz_80band', use_cuda_kernel=True)
|
88 |
```
|
89 |
|
90 |
+
When applied for the first time, it builds the kernel using `nvcc` and `ninja`. If the build succeeds, the kernel is saved to `alias_free_activation/cuda/build` and the model automatically loads the kernel. The codebase has been tested using CUDA `12.1`.
|
91 |
|
92 |
Please make sure that both are installed in your system and `nvcc` installed in your system matches the version your PyTorch build is using.
|
93 |
|
|
|
95 |
|
96 |
|
97 |
## Pretrained Models
|
98 |
+
|
99 |
+
We provide the [pretrained models on Hugging Face Collections](https://huggingface.co/collections/nvidia/bigvgan-66959df3d97fd7d98d97dc9a).
|
100 |
+
One can download the checkpoints of the generator weight (named `bigvgan_generator.pt`) and its discriminator/optimizer states (named `bigvgan_discriminator_optimizer.pt`) within the listed model repositories.
|
101 |
+
|
102 |
+
| Model Name | Sampling Rate | Mel band | fmax | Upsampling Ratio | Params | Dataset | Steps | Fine-Tuned |
|
103 |
+
|:--------------------------------------------------------------------------------------------------------:|:-------------:|:--------:|:-----:|:----------------:|:------:|:--------------------------:|:-----:|:----------:|
|
104 |
+
| [bigvgan_v2_44khz_128band_512x](https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_512x) | 44 kHz | 128 | 22050 | 512 | 122M | Large-scale Compilation | 3M | No |
|
105 |
+
| [bigvgan_v2_44khz_128band_256x](https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_256x) | 44 kHz | 128 | 22050 | 256 | 112M | Large-scale Compilation | 3M | No |
|
106 |
+
| [bigvgan_v2_24khz_100band_256x](https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x) | 24 kHz | 100 | 12000 | 256 | 112M | Large-scale Compilation | 3M | No |
|
107 |
+
| [bigvgan_v2_22khz_80band_256x](https://huggingface.co/nvidia/bigvgan_v2_22khz_80band_256x) | 22 kHz | 80 | 11025 | 256 | 112M | Large-scale Compilation | 3M | No |
|
108 |
+
| [bigvgan_v2_22khz_80band_fmax8k_256x](https://huggingface.co/nvidia/bigvgan_v2_22khz_80band_fmax8k_256x) | 22 kHz | 80 | 8000 | 256 | 112M | Large-scale Compilation | 3M | No |
|
109 |
+
| [bigvgan_24khz_100band](https://huggingface.co/nvidia/bigvgan_24khz_100band) | 24 kHz | 100 | 12000 | 256 | 112M | LibriTTS | 5M | No |
|
110 |
+
| [bigvgan_base_24khz_100band](https://huggingface.co/nvidia/bigvgan_base_24khz_100band) | 24 kHz | 100 | 12000 | 256 | 14M | LibriTTS | 5M | No |
|
111 |
+
| [bigvgan_22khz_80band](https://huggingface.co/nvidia/bigvgan_22khz_80band) | 22 kHz | 80 | 8000 | 256 | 112M | LibriTTS + VCTK + LJSpeech | 5M | No |
|
112 |
+
| [bigvgan_base_22khz_80band](https://huggingface.co/nvidia/bigvgan_base_22khz_80band) | 22 kHz | 80 | 8000 | 256 | 14M | LibriTTS + VCTK + LJSpeech | 5M | No |
|
{alias_free_cuda β alias_free_activation/cuda}/__init__.py
RENAMED
File without changes
|
{alias_free_cuda β alias_free_activation/cuda}/activation1d.py
RENAMED
@@ -3,36 +3,45 @@
|
|
3 |
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
-
from
|
|
|
7 |
# load fused CUDA kernel: this enables importing anti_alias_activation_cuda
|
8 |
-
from
|
9 |
-
|
|
|
|
|
10 |
|
11 |
class FusedAntiAliasActivation(torch.autograd.Function):
|
12 |
"""
|
13 |
-
Assumes filter size 12, replication padding on upsampling, and logscale alpha/beta parameters as inputs
|
|
|
|
|
14 |
"""
|
|
|
15 |
@staticmethod
|
16 |
-
def forward(ctx, inputs,
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
return activation_results
|
20 |
|
21 |
@staticmethod
|
22 |
def backward(ctx, output_grads):
|
23 |
-
# TODO: implement bwd pass
|
24 |
raise NotImplementedError
|
25 |
return output_grads, None, None
|
26 |
|
|
|
27 |
class Activation1d(nn.Module):
|
28 |
-
def __init__(
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
36 |
super().__init__()
|
37 |
self.up_ratio = up_ratio
|
38 |
self.down_ratio = down_ratio
|
@@ -40,8 +49,7 @@ class Activation1d(nn.Module):
|
|
40 |
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
41 |
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
42 |
|
43 |
-
self.fused = fused
|
44 |
-
|
45 |
|
46 |
def forward(self, x):
|
47 |
if not self.fused:
|
@@ -51,13 +59,19 @@ class Activation1d(nn.Module):
|
|
51 |
return x
|
52 |
else:
|
53 |
if self.act.__class__.__name__ == "Snake":
|
54 |
-
beta = self.act.alpha.data
|
55 |
else:
|
56 |
-
beta =
|
|
|
|
|
57 |
alpha = self.act.alpha.data
|
58 |
-
if
|
|
|
|
|
59 |
alpha = torch.log(alpha)
|
60 |
beta = torch.log(beta)
|
61 |
-
|
62 |
-
x =
|
|
|
|
|
63 |
return x
|
|
|
3 |
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
+
from alias_free_activation.torch.resample import UpSample1d, DownSample1d
|
7 |
+
|
8 |
# load fused CUDA kernel: this enables importing anti_alias_activation_cuda
|
9 |
+
from alias_free_activation.cuda import load
|
10 |
+
|
11 |
+
anti_alias_activation_cuda = load.load()
|
12 |
+
|
13 |
|
14 |
class FusedAntiAliasActivation(torch.autograd.Function):
|
15 |
"""
|
16 |
+
Assumes filter size 12, replication padding on upsampling/downsampling, and logscale alpha/beta parameters as inputs.
|
17 |
+
The hyperparameters are hard-coded in the kernel to maximize speed.
|
18 |
+
NOTE: The fused kenrel is incorrect for Activation1d with different hyperparameters.
|
19 |
"""
|
20 |
+
|
21 |
@staticmethod
|
22 |
+
def forward(ctx, inputs, up_ftr, down_ftr, alpha, beta):
|
23 |
+
activation_results = anti_alias_activation_cuda.forward(
|
24 |
+
inputs, up_ftr, down_ftr, alpha, beta
|
25 |
+
)
|
26 |
+
|
27 |
return activation_results
|
28 |
|
29 |
@staticmethod
|
30 |
def backward(ctx, output_grads):
|
|
|
31 |
raise NotImplementedError
|
32 |
return output_grads, None, None
|
33 |
|
34 |
+
|
35 |
class Activation1d(nn.Module):
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
activation,
|
39 |
+
up_ratio: int = 2,
|
40 |
+
down_ratio: int = 2,
|
41 |
+
up_kernel_size: int = 12,
|
42 |
+
down_kernel_size: int = 12,
|
43 |
+
fused: bool = True,
|
44 |
+
):
|
45 |
super().__init__()
|
46 |
self.up_ratio = up_ratio
|
47 |
self.down_ratio = down_ratio
|
|
|
49 |
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
50 |
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
51 |
|
52 |
+
self.fused = fused # Whether to use fused CUDA kernel or not
|
|
|
53 |
|
54 |
def forward(self, x):
|
55 |
if not self.fused:
|
|
|
59 |
return x
|
60 |
else:
|
61 |
if self.act.__class__.__name__ == "Snake":
|
62 |
+
beta = self.act.alpha.data # Snake uses same params for alpha and beta
|
63 |
else:
|
64 |
+
beta = (
|
65 |
+
self.act.beta.data
|
66 |
+
) # Snakebeta uses different params for alpha and beta
|
67 |
alpha = self.act.alpha.data
|
68 |
+
if (
|
69 |
+
not self.act.alpha_logscale
|
70 |
+
): # Exp baked into cuda kernel, cancel it out with a log
|
71 |
alpha = torch.log(alpha)
|
72 |
beta = torch.log(beta)
|
73 |
+
|
74 |
+
x = FusedAntiAliasActivation.apply(
|
75 |
+
x, self.upsample.filter, self.downsample.lowpass.filter, alpha, beta
|
76 |
+
)
|
77 |
return x
|
{alias_free_cuda β alias_free_activation/cuda}/anti_alias_activation.cpp
RENAMED
@@ -14,35 +14,10 @@
|
|
14 |
* limitations under the License.
|
15 |
*/
|
16 |
|
17 |
-
#include <
|
18 |
-
#include <torch/extension.h>
|
19 |
-
#include <vector>
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
torch::Tensor fwd_cuda(torch::Tensor const& input,
|
24 |
-
torch::Tensor const& filter,
|
25 |
-
torch::Tensor const& alpha,
|
26 |
-
torch::Tensor const& beta
|
27 |
-
);
|
28 |
-
|
29 |
-
torch::Tensor fwd(torch::Tensor const& input,
|
30 |
-
torch::Tensor const& filter,
|
31 |
-
torch::Tensor const& alpha,
|
32 |
-
torch::Tensor const& beta
|
33 |
-
) {
|
34 |
-
AT_ASSERTM(input.dim() == 3, "expected 3D tensor");
|
35 |
-
//AT_ASSERTM((input.scalar_type() == at::ScalarType::Half) ||
|
36 |
-
// (input.scalar_type() == at::ScalarType::BFloat16),
|
37 |
-
// "Only fp16 and bf16 are supported");
|
38 |
-
|
39 |
-
return fwd_cuda(input, filter, alpha, beta);
|
40 |
-
}
|
41 |
-
|
42 |
-
} // end namespace anti_alias_activation
|
43 |
|
44 |
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
45 |
-
|
46 |
-
|
47 |
-
"Anti Alias Activation -- Forward.");
|
48 |
-
}
|
|
|
14 |
* limitations under the License.
|
15 |
*/
|
16 |
|
17 |
+
#include <torch/extension.h>
|
|
|
|
|
18 |
|
19 |
+
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
22 |
+
m.def("forward", &fwd_cuda, "Anti-Alias Activation forward (CUDA)");
|
23 |
+
}
|
|
|
|
alias_free_activation/cuda/anti_alias_activation_cuda.cu
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* coding=utf-8
|
2 |
+
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*/
|
16 |
+
|
17 |
+
#include <ATen/ATen.h>
|
18 |
+
#include <cuda.h>
|
19 |
+
#include <cuda_runtime.h>
|
20 |
+
#include <cuda_fp16.h>
|
21 |
+
#include <cuda_profiler_api.h>
|
22 |
+
#include <ATen/cuda/CUDAContext.h>
|
23 |
+
#include <torch/extension.h>
|
24 |
+
#include "type_shim.h"
|
25 |
+
#include <assert.h>
|
26 |
+
#include <cfloat>
|
27 |
+
#include <limits>
|
28 |
+
#include <stdint.h>
|
29 |
+
#include <c10/macros/Macros.h>
|
30 |
+
|
31 |
+
namespace
|
32 |
+
{
|
33 |
+
// Hard-coded hyperparameters
|
34 |
+
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
|
35 |
+
constexpr int ELEMENTS_PER_LDG_STG = 1; //(WARP_ITERATIONS < 4) ? 1 : 4;
|
36 |
+
constexpr int BUFFER_SIZE = 32;
|
37 |
+
constexpr int FILTER_SIZE = 12;
|
38 |
+
constexpr int HALF_FILTER_SIZE = 6;
|
39 |
+
constexpr int UPSAMPLE_REPLICATION_PAD = 5; // 5 on each side, matching torch impl
|
40 |
+
constexpr int DOWNSAMPLE_REPLICATION_PAD_LEFT = 5; // matching torch impl
|
41 |
+
constexpr int DOWNSAMPLE_REPLICATION_PAD_RIGHT = 6; // matching torch impl
|
42 |
+
|
43 |
+
template <typename input_t, typename output_t, typename acc_t>
|
44 |
+
__global__ void anti_alias_activation_forward(
|
45 |
+
output_t *dst,
|
46 |
+
const input_t *src,
|
47 |
+
const input_t *up_ftr,
|
48 |
+
const input_t *down_ftr,
|
49 |
+
const input_t *alpha,
|
50 |
+
const input_t *beta,
|
51 |
+
int batch_size,
|
52 |
+
int channels,
|
53 |
+
int seq_len)
|
54 |
+
{
|
55 |
+
// Up and downsample filters
|
56 |
+
input_t up_filter[FILTER_SIZE];
|
57 |
+
input_t down_filter[FILTER_SIZE];
|
58 |
+
|
59 |
+
// Load data from global memory including extra indices reserved for replication paddings
|
60 |
+
input_t elements[2 * FILTER_SIZE + 2 * BUFFER_SIZE + 2 * UPSAMPLE_REPLICATION_PAD] = {0};
|
61 |
+
input_t intermediates[2 * FILTER_SIZE + 2 * BUFFER_SIZE + DOWNSAMPLE_REPLICATION_PAD_LEFT + DOWNSAMPLE_REPLICATION_PAD_RIGHT] = {0};
|
62 |
+
|
63 |
+
// Output stores downsampled output before writing to dst
|
64 |
+
output_t output[BUFFER_SIZE];
|
65 |
+
|
66 |
+
// blockDim/threadIdx = (128, 1, 1)
|
67 |
+
// gridDim/blockIdx = (seq_blocks, channels, batches)
|
68 |
+
int block_offset = (blockIdx.x * 128 * BUFFER_SIZE + seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
69 |
+
int local_offset = threadIdx.x * BUFFER_SIZE;
|
70 |
+
int seq_offset = blockIdx.x * 128 * BUFFER_SIZE + local_offset;
|
71 |
+
|
72 |
+
// intermediate have double the seq_len
|
73 |
+
int intermediate_local_offset = threadIdx.x * BUFFER_SIZE * 2;
|
74 |
+
int intermediate_seq_offset = blockIdx.x * 128 * BUFFER_SIZE * 2 + intermediate_local_offset;
|
75 |
+
|
76 |
+
// Get values needed for replication padding before moving pointer
|
77 |
+
const input_t *right_most_pntr = src + (seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
78 |
+
input_t seq_left_most_value = right_most_pntr[0];
|
79 |
+
input_t seq_right_most_value = right_most_pntr[seq_len - 1];
|
80 |
+
|
81 |
+
// Move src and dst pointers
|
82 |
+
src += block_offset + local_offset;
|
83 |
+
dst += block_offset + local_offset;
|
84 |
+
|
85 |
+
// Alpha and beta values for snake activatons. Applies exp by default
|
86 |
+
alpha = alpha + blockIdx.y;
|
87 |
+
input_t alpha_val = expf(alpha[0]);
|
88 |
+
beta = beta + blockIdx.y;
|
89 |
+
input_t beta_val = expf(beta[0]);
|
90 |
+
|
91 |
+
#pragma unroll
|
92 |
+
for (int it = 0; it < FILTER_SIZE; it += 1)
|
93 |
+
{
|
94 |
+
up_filter[it] = up_ftr[it];
|
95 |
+
down_filter[it] = down_ftr[it];
|
96 |
+
}
|
97 |
+
|
98 |
+
// Apply replication padding for upsampling, matching torch impl
|
99 |
+
#pragma unroll
|
100 |
+
for (int it = -HALF_FILTER_SIZE; it < BUFFER_SIZE + HALF_FILTER_SIZE; it += 1)
|
101 |
+
{
|
102 |
+
int element_index = seq_offset + it; // index for element
|
103 |
+
if ((element_index < 0) && (element_index >= -UPSAMPLE_REPLICATION_PAD))
|
104 |
+
{
|
105 |
+
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_left_most_value;
|
106 |
+
}
|
107 |
+
if ((element_index >= seq_len) && (element_index < seq_len + UPSAMPLE_REPLICATION_PAD))
|
108 |
+
{
|
109 |
+
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_right_most_value;
|
110 |
+
}
|
111 |
+
if ((element_index >= 0) && (element_index < seq_len))
|
112 |
+
{
|
113 |
+
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * src[it];
|
114 |
+
}
|
115 |
+
}
|
116 |
+
|
117 |
+
// Apply upsampling strided convolution and write to intermediates. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT for replication padding of the downsampilng conv later
|
118 |
+
#pragma unroll
|
119 |
+
for (int it = 0; it < (2 * BUFFER_SIZE + 2 * FILTER_SIZE); it += 1)
|
120 |
+
{
|
121 |
+
input_t acc = 0.0;
|
122 |
+
int element_index = intermediate_seq_offset + it; // index for intermediate
|
123 |
+
#pragma unroll
|
124 |
+
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
|
125 |
+
{
|
126 |
+
if ((element_index + f_idx) >= 0)
|
127 |
+
{
|
128 |
+
acc += up_filter[f_idx] * elements[it + f_idx];
|
129 |
+
}
|
130 |
+
}
|
131 |
+
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] = acc;
|
132 |
+
}
|
133 |
+
|
134 |
+
// Apply activation function. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT and DOWNSAMPLE_REPLICATION_PAD_RIGHT for replication padding of the downsampilng conv later
|
135 |
+
double no_div_by_zero = 0.000000001;
|
136 |
+
#pragma unroll
|
137 |
+
for (int it = 0; it < 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it += 1)
|
138 |
+
{
|
139 |
+
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] += (1.0 / (beta_val + no_div_by_zero)) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val);
|
140 |
+
}
|
141 |
+
|
142 |
+
// Apply replication padding before downsampling conv from intermediates
|
143 |
+
#pragma unroll
|
144 |
+
for (int it = 0; it < DOWNSAMPLE_REPLICATION_PAD_LEFT; it += 1)
|
145 |
+
{
|
146 |
+
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT];
|
147 |
+
}
|
148 |
+
#pragma unroll
|
149 |
+
for (int it = DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it < DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE + DOWNSAMPLE_REPLICATION_PAD_RIGHT; it += 1)
|
150 |
+
{
|
151 |
+
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE - 1];
|
152 |
+
}
|
153 |
+
|
154 |
+
// Apply downsample strided convolution (assuming stride=2) from intermediates
|
155 |
+
#pragma unroll
|
156 |
+
for (int it = 0; it < BUFFER_SIZE; it += 1)
|
157 |
+
{
|
158 |
+
input_t acc = 0.0;
|
159 |
+
#pragma unroll
|
160 |
+
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
|
161 |
+
{
|
162 |
+
// Add constant DOWNSAMPLE_REPLICATION_PAD_RIGHT to match torch implementation
|
163 |
+
acc += down_filter[f_idx] * intermediates[it * 2 + f_idx + DOWNSAMPLE_REPLICATION_PAD_RIGHT];
|
164 |
+
}
|
165 |
+
output[it] = acc;
|
166 |
+
}
|
167 |
+
|
168 |
+
// Write output to dst
|
169 |
+
#pragma unroll
|
170 |
+
for (int it = 0; it < BUFFER_SIZE; it += ELEMENTS_PER_LDG_STG)
|
171 |
+
{
|
172 |
+
int element_index = seq_offset + it;
|
173 |
+
if (element_index < seq_len)
|
174 |
+
{
|
175 |
+
dst[it] = output[it];
|
176 |
+
}
|
177 |
+
}
|
178 |
+
|
179 |
+
}
|
180 |
+
|
181 |
+
template <typename input_t, typename output_t, typename acc_t>
|
182 |
+
void dispatch_anti_alias_activation_forward(
|
183 |
+
output_t *dst,
|
184 |
+
const input_t *src,
|
185 |
+
const input_t *up_ftr,
|
186 |
+
const input_t *down_ftr,
|
187 |
+
const input_t *alpha,
|
188 |
+
const input_t *beta,
|
189 |
+
int batch_size,
|
190 |
+
int channels,
|
191 |
+
int seq_len)
|
192 |
+
{
|
193 |
+
if (seq_len == 0)
|
194 |
+
{
|
195 |
+
return;
|
196 |
+
}
|
197 |
+
else
|
198 |
+
{
|
199 |
+
// Use 128 threads per block to maximimize gpu utilization
|
200 |
+
constexpr int threads_per_block = 128;
|
201 |
+
constexpr int seq_len_per_block = 4096;
|
202 |
+
int blocks_per_seq_len = (seq_len + seq_len_per_block - 1) / seq_len_per_block;
|
203 |
+
dim3 blocks(blocks_per_seq_len, channels, batch_size);
|
204 |
+
dim3 threads(threads_per_block, 1, 1);
|
205 |
+
|
206 |
+
anti_alias_activation_forward<input_t, output_t, acc_t>
|
207 |
+
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, up_ftr, down_ftr, alpha, beta, batch_size, channels, seq_len);
|
208 |
+
}
|
209 |
+
}
|
210 |
+
}
|
211 |
+
|
212 |
+
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta)
|
213 |
+
{
|
214 |
+
// Input is a 3d tensor with dimensions [batches, channels, seq_len]
|
215 |
+
const int batches = input.size(0);
|
216 |
+
const int channels = input.size(1);
|
217 |
+
const int seq_len = input.size(2);
|
218 |
+
|
219 |
+
// Output
|
220 |
+
auto act_options = input.options().requires_grad(false);
|
221 |
+
|
222 |
+
torch::Tensor anti_alias_activation_results =
|
223 |
+
torch::empty({batches, channels, seq_len}, act_options);
|
224 |
+
|
225 |
+
void *input_ptr = static_cast<void *>(input.data_ptr());
|
226 |
+
void *up_filter_ptr = static_cast<void *>(up_filter.data_ptr());
|
227 |
+
void *down_filter_ptr = static_cast<void *>(down_filter.data_ptr());
|
228 |
+
void *alpha_ptr = static_cast<void *>(alpha.data_ptr());
|
229 |
+
void *beta_ptr = static_cast<void *>(beta.data_ptr());
|
230 |
+
void *anti_alias_activation_results_ptr = static_cast<void *>(anti_alias_activation_results.data_ptr());
|
231 |
+
|
232 |
+
DISPATCH_FLOAT_HALF_AND_BFLOAT(
|
233 |
+
input.scalar_type(),
|
234 |
+
"dispatch anti alias activation_forward",
|
235 |
+
dispatch_anti_alias_activation_forward<scalar_t, scalar_t, float>(
|
236 |
+
reinterpret_cast<scalar_t *>(anti_alias_activation_results_ptr),
|
237 |
+
reinterpret_cast<const scalar_t *>(input_ptr),
|
238 |
+
reinterpret_cast<const scalar_t *>(up_filter_ptr),
|
239 |
+
reinterpret_cast<const scalar_t *>(down_filter_ptr),
|
240 |
+
reinterpret_cast<const scalar_t *>(alpha_ptr),
|
241 |
+
reinterpret_cast<const scalar_t *>(beta_ptr),
|
242 |
+
batches,
|
243 |
+
channels,
|
244 |
+
seq_len););
|
245 |
+
return anti_alias_activation_results;
|
246 |
+
}
|
{alias_free_cuda β alias_free_activation/cuda}/compat.h
RENAMED
@@ -18,8 +18,6 @@
|
|
18 |
* https://github.com/NVIDIA/apex
|
19 |
* with minor changes. */
|
20 |
|
21 |
-
|
22 |
-
|
23 |
#ifndef TORCH_CHECK
|
24 |
#define TORCH_CHECK AT_CHECK
|
25 |
#endif
|
|
|
18 |
* https://github.com/NVIDIA/apex
|
19 |
* with minor changes. */
|
20 |
|
|
|
|
|
21 |
#ifndef TORCH_CHECK
|
22 |
#define TORCH_CHECK AT_CHECK
|
23 |
#endif
|
{alias_free_cuda β alias_free_activation/cuda}/load.py
RENAMED
@@ -7,26 +7,24 @@ import subprocess
|
|
7 |
|
8 |
from torch.utils import cpp_extension
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
# extra_cuda_cflags below
|
15 |
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
|
16 |
|
17 |
|
18 |
def load():
|
19 |
# Check if cuda 11 is installed for compute capability 8.0
|
20 |
cc_flag = []
|
21 |
-
_, bare_metal_major, _ = _get_cuda_bare_metal_version(
|
22 |
-
cpp_extension.CUDA_HOME)
|
23 |
if int(bare_metal_major) >= 11:
|
24 |
-
cc_flag.append(
|
25 |
-
cc_flag.append(
|
26 |
|
27 |
# Build path
|
28 |
srcpath = pathlib.Path(__file__).parent.absolute()
|
29 |
-
buildpath = srcpath /
|
30 |
_create_build_dir(buildpath)
|
31 |
|
32 |
# Helper function to build the kernels.
|
@@ -35,26 +33,42 @@ def load():
|
|
35 |
name=name,
|
36 |
sources=sources,
|
37 |
build_directory=buildpath,
|
38 |
-
extra_cflags=[
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
)
|
44 |
|
45 |
-
extra_cuda_flags = [
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
52 |
anti_alias_activation_cuda = _cpp_extention_load_helper(
|
53 |
-
"anti_alias_activation_cuda", sources, extra_cuda_flags
|
|
|
|
|
|
|
|
|
54 |
|
55 |
def _get_cuda_bare_metal_version(cuda_dir):
|
56 |
-
raw_output = subprocess.check_output(
|
57 |
-
|
|
|
58 |
output = raw_output.split()
|
59 |
release_idx = output.index("release") + 1
|
60 |
release = output[release_idx].split(".")
|
@@ -69,4 +83,4 @@ def _create_build_dir(buildpath):
|
|
69 |
os.mkdir(buildpath)
|
70 |
except OSError:
|
71 |
if not os.path.isdir(buildpath):
|
72 |
-
print(f"Creation of the build directory {buildpath} failed")
|
|
|
7 |
|
8 |
from torch.utils import cpp_extension
|
9 |
|
10 |
+
"""
|
11 |
+
Setting this param to a list has a problem of generating different compilation commands (with diferent order of architectures) and leading to recompilation of fused kernels.
|
12 |
+
Set it to empty stringo avoid recompilation and assign arch flags explicity in extra_cuda_cflags below
|
13 |
+
"""
|
|
|
14 |
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
|
15 |
|
16 |
|
17 |
def load():
|
18 |
# Check if cuda 11 is installed for compute capability 8.0
|
19 |
cc_flag = []
|
20 |
+
_, bare_metal_major, _ = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
|
|
|
21 |
if int(bare_metal_major) >= 11:
|
22 |
+
cc_flag.append("-gencode")
|
23 |
+
cc_flag.append("arch=compute_80,code=sm_80")
|
24 |
|
25 |
# Build path
|
26 |
srcpath = pathlib.Path(__file__).parent.absolute()
|
27 |
+
buildpath = srcpath / "build"
|
28 |
_create_build_dir(buildpath)
|
29 |
|
30 |
# Helper function to build the kernels.
|
|
|
33 |
name=name,
|
34 |
sources=sources,
|
35 |
build_directory=buildpath,
|
36 |
+
extra_cflags=[
|
37 |
+
"-O3",
|
38 |
+
],
|
39 |
+
extra_cuda_cflags=[
|
40 |
+
"-O3",
|
41 |
+
"-gencode",
|
42 |
+
"arch=compute_70,code=sm_70",
|
43 |
+
"--use_fast_math",
|
44 |
+
]
|
45 |
+
+ extra_cuda_flags
|
46 |
+
+ cc_flag,
|
47 |
+
verbose=True,
|
48 |
)
|
49 |
|
50 |
+
extra_cuda_flags = [
|
51 |
+
"-U__CUDA_NO_HALF_OPERATORS__",
|
52 |
+
"-U__CUDA_NO_HALF_CONVERSIONS__",
|
53 |
+
"--expt-relaxed-constexpr",
|
54 |
+
"--expt-extended-lambda",
|
55 |
+
]
|
56 |
+
|
57 |
+
sources = [
|
58 |
+
srcpath / "anti_alias_activation.cpp",
|
59 |
+
srcpath / "anti_alias_activation_cuda.cu",
|
60 |
+
]
|
61 |
anti_alias_activation_cuda = _cpp_extention_load_helper(
|
62 |
+
"anti_alias_activation_cuda", sources, extra_cuda_flags
|
63 |
+
)
|
64 |
+
|
65 |
+
return anti_alias_activation_cuda
|
66 |
+
|
67 |
|
68 |
def _get_cuda_bare_metal_version(cuda_dir):
|
69 |
+
raw_output = subprocess.check_output(
|
70 |
+
[cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True
|
71 |
+
)
|
72 |
output = raw_output.split()
|
73 |
release_idx = output.index("release") + 1
|
74 |
release = output[release_idx].split(".")
|
|
|
83 |
os.mkdir(buildpath)
|
84 |
except OSError:
|
85 |
if not os.path.isdir(buildpath):
|
86 |
+
print(f"Creation of the build directory {buildpath} failed")
|
alias_free_activation/cuda/type_shim.h
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* coding=utf-8
|
2 |
+
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*/
|
16 |
+
|
17 |
+
#include <ATen/ATen.h>
|
18 |
+
#include "compat.h"
|
19 |
+
|
20 |
+
#define DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, NAME, ...) \
|
21 |
+
switch (TYPE) \
|
22 |
+
{ \
|
23 |
+
case at::ScalarType::Float: \
|
24 |
+
{ \
|
25 |
+
using scalar_t = float; \
|
26 |
+
__VA_ARGS__; \
|
27 |
+
break; \
|
28 |
+
} \
|
29 |
+
case at::ScalarType::Half: \
|
30 |
+
{ \
|
31 |
+
using scalar_t = at::Half; \
|
32 |
+
__VA_ARGS__; \
|
33 |
+
break; \
|
34 |
+
} \
|
35 |
+
case at::ScalarType::BFloat16: \
|
36 |
+
{ \
|
37 |
+
using scalar_t = at::BFloat16; \
|
38 |
+
__VA_ARGS__; \
|
39 |
+
break; \
|
40 |
+
} \
|
41 |
+
default: \
|
42 |
+
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
|
43 |
+
}
|
44 |
+
|
45 |
+
#define DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
|
46 |
+
switch (TYPEIN) \
|
47 |
+
{ \
|
48 |
+
case at::ScalarType::Float: \
|
49 |
+
{ \
|
50 |
+
using scalar_t_in = float; \
|
51 |
+
switch (TYPEOUT) \
|
52 |
+
{ \
|
53 |
+
case at::ScalarType::Float: \
|
54 |
+
{ \
|
55 |
+
using scalar_t_out = float; \
|
56 |
+
__VA_ARGS__; \
|
57 |
+
break; \
|
58 |
+
} \
|
59 |
+
case at::ScalarType::Half: \
|
60 |
+
{ \
|
61 |
+
using scalar_t_out = at::Half; \
|
62 |
+
__VA_ARGS__; \
|
63 |
+
break; \
|
64 |
+
} \
|
65 |
+
case at::ScalarType::BFloat16: \
|
66 |
+
{ \
|
67 |
+
using scalar_t_out = at::BFloat16; \
|
68 |
+
__VA_ARGS__; \
|
69 |
+
break; \
|
70 |
+
} \
|
71 |
+
default: \
|
72 |
+
AT_ERROR(#NAME, " not implemented for '", toString(TYPEOUT), "'"); \
|
73 |
+
} \
|
74 |
+
break; \
|
75 |
+
} \
|
76 |
+
case at::ScalarType::Half: \
|
77 |
+
{ \
|
78 |
+
using scalar_t_in = at::Half; \
|
79 |
+
using scalar_t_out = at::Half; \
|
80 |
+
__VA_ARGS__; \
|
81 |
+
break; \
|
82 |
+
} \
|
83 |
+
case at::ScalarType::BFloat16: \
|
84 |
+
{ \
|
85 |
+
using scalar_t_in = at::BFloat16; \
|
86 |
+
using scalar_t_out = at::BFloat16; \
|
87 |
+
__VA_ARGS__; \
|
88 |
+
break; \
|
89 |
+
} \
|
90 |
+
default: \
|
91 |
+
AT_ERROR(#NAME, " not implemented for '", toString(TYPEIN), "'"); \
|
92 |
+
}
|
{alias_free_torch β alias_free_activation/torch}/__init__.py
RENAMED
@@ -3,4 +3,4 @@
|
|
3 |
|
4 |
from .filter import *
|
5 |
from .resample import *
|
6 |
-
from .act import *
|
|
|
3 |
|
4 |
from .filter import *
|
5 |
from .resample import *
|
6 |
+
from .act import *
|
{alias_free_torch β alias_free_activation/torch}/act.py
RENAMED
@@ -2,16 +2,18 @@
|
|
2 |
# LICENSE is in incl_licenses directory.
|
3 |
|
4 |
import torch.nn as nn
|
5 |
-
from .resample import UpSample1d, DownSample1d
|
6 |
|
7 |
|
8 |
class Activation1d(nn.Module):
|
9 |
-
def __init__(
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
15 |
super().__init__()
|
16 |
self.up_ratio = up_ratio
|
17 |
self.down_ratio = down_ratio
|
@@ -25,4 +27,4 @@ class Activation1d(nn.Module):
|
|
25 |
x = self.act(x)
|
26 |
x = self.downsample(x)
|
27 |
|
28 |
-
return x
|
|
|
2 |
# LICENSE is in incl_licenses directory.
|
3 |
|
4 |
import torch.nn as nn
|
5 |
+
from alias_free_activation.torch.resample import UpSample1d, DownSample1d
|
6 |
|
7 |
|
8 |
class Activation1d(nn.Module):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
activation,
|
12 |
+
up_ratio: int = 2,
|
13 |
+
down_ratio: int = 2,
|
14 |
+
up_kernel_size: int = 12,
|
15 |
+
down_kernel_size: int = 12,
|
16 |
+
):
|
17 |
super().__init__()
|
18 |
self.up_ratio = up_ratio
|
19 |
self.down_ratio = down_ratio
|
|
|
27 |
x = self.act(x)
|
28 |
x = self.downsample(x)
|
29 |
|
30 |
+
return x
|
{alias_free_torch β alias_free_activation/torch}/filter.py
RENAMED
@@ -6,7 +6,7 @@ import torch.nn as nn
|
|
6 |
import torch.nn.functional as F
|
7 |
import math
|
8 |
|
9 |
-
if
|
10 |
sinc = torch.sinc
|
11 |
else:
|
12 |
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
@@ -17,40 +17,45 @@ else:
|
|
17 |
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
18 |
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
19 |
"""
|
20 |
-
return torch.where(
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
|
24 |
|
25 |
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
26 |
# https://adefossez.github.io/julius/julius/lowpass.html
|
27 |
# LICENSE is in incl_licenses directory.
|
28 |
-
def kaiser_sinc_filter1d(
|
29 |
-
|
|
|
|
|
30 |
half_size = kernel_size // 2
|
31 |
|
32 |
-
#For kaiser window
|
33 |
delta_f = 4 * half_width
|
34 |
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
35 |
-
if A > 50
|
36 |
beta = 0.1102 * (A - 8.7)
|
37 |
-
elif A >= 21
|
38 |
-
beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21.)
|
39 |
else:
|
40 |
-
beta = 0.
|
41 |
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
42 |
|
43 |
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
44 |
if even:
|
45 |
-
time =
|
46 |
else:
|
47 |
time = torch.arange(kernel_size) - half_size
|
48 |
if cutoff == 0:
|
49 |
filter_ = torch.zeros_like(time)
|
50 |
else:
|
51 |
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
52 |
-
|
53 |
-
|
|
|
54 |
filter_ /= filter_.sum()
|
55 |
filter = filter_.view(1, 1, kernel_size)
|
56 |
|
@@ -58,22 +63,25 @@ def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,
|
|
58 |
|
59 |
|
60 |
class LowPassFilter1d(nn.Module):
|
61 |
-
def __init__(
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
70 |
super().__init__()
|
71 |
-
if cutoff < -0
|
72 |
raise ValueError("Minimum cutoff must be larger than zero.")
|
73 |
if cutoff > 0.5:
|
74 |
raise ValueError("A cutoff above 0.5 does not make sense.")
|
75 |
self.kernel_size = kernel_size
|
76 |
-
self.even =
|
77 |
self.pad_left = kernel_size // 2 - int(self.even)
|
78 |
self.pad_right = kernel_size // 2
|
79 |
self.stride = stride
|
@@ -82,14 +90,12 @@ class LowPassFilter1d(nn.Module):
|
|
82 |
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
83 |
self.register_buffer("filter", filter)
|
84 |
|
85 |
-
#
|
86 |
def forward(self, x):
|
87 |
_, C, _ = x.shape
|
88 |
|
89 |
if self.padding:
|
90 |
-
x = F.pad(x, (self.pad_left, self.pad_right),
|
91 |
-
|
92 |
-
out = F.conv1d(x, self.filter.expand(C, -1, -1),
|
93 |
-
stride=self.stride, groups=C)
|
94 |
|
95 |
-
return out
|
|
|
6 |
import torch.nn.functional as F
|
7 |
import math
|
8 |
|
9 |
+
if "sinc" in dir(torch):
|
10 |
sinc = torch.sinc
|
11 |
else:
|
12 |
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
|
|
17 |
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
18 |
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
19 |
"""
|
20 |
+
return torch.where(
|
21 |
+
x == 0,
|
22 |
+
torch.tensor(1.0, device=x.device, dtype=x.dtype),
|
23 |
+
torch.sin(math.pi * x) / math.pi / x,
|
24 |
+
)
|
25 |
|
26 |
|
27 |
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
28 |
# https://adefossez.github.io/julius/julius/lowpass.html
|
29 |
# LICENSE is in incl_licenses directory.
|
30 |
+
def kaiser_sinc_filter1d(
|
31 |
+
cutoff, half_width, kernel_size
|
32 |
+
): # return filter [1,1,kernel_size]
|
33 |
+
even = kernel_size % 2 == 0
|
34 |
half_size = kernel_size // 2
|
35 |
|
36 |
+
# For kaiser window
|
37 |
delta_f = 4 * half_width
|
38 |
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
39 |
+
if A > 50.0:
|
40 |
beta = 0.1102 * (A - 8.7)
|
41 |
+
elif A >= 21.0:
|
42 |
+
beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0)
|
43 |
else:
|
44 |
+
beta = 0.0
|
45 |
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
46 |
|
47 |
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
48 |
if even:
|
49 |
+
time = torch.arange(-half_size, half_size) + 0.5
|
50 |
else:
|
51 |
time = torch.arange(kernel_size) - half_size
|
52 |
if cutoff == 0:
|
53 |
filter_ = torch.zeros_like(time)
|
54 |
else:
|
55 |
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
56 |
+
"""
|
57 |
+
Normalize filter to have sum = 1, otherwise we will have a small leakage of the constant component in the input signal.
|
58 |
+
"""
|
59 |
filter_ /= filter_.sum()
|
60 |
filter = filter_.view(1, 1, kernel_size)
|
61 |
|
|
|
63 |
|
64 |
|
65 |
class LowPassFilter1d(nn.Module):
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
cutoff=0.5,
|
69 |
+
half_width=0.6,
|
70 |
+
stride: int = 1,
|
71 |
+
padding: bool = True,
|
72 |
+
padding_mode: str = "replicate",
|
73 |
+
kernel_size: int = 12,
|
74 |
+
):
|
75 |
+
"""
|
76 |
+
kernel_size should be even number for stylegan3 setup, in this implementation, odd number is also possible.
|
77 |
+
"""
|
78 |
super().__init__()
|
79 |
+
if cutoff < -0.0:
|
80 |
raise ValueError("Minimum cutoff must be larger than zero.")
|
81 |
if cutoff > 0.5:
|
82 |
raise ValueError("A cutoff above 0.5 does not make sense.")
|
83 |
self.kernel_size = kernel_size
|
84 |
+
self.even = kernel_size % 2 == 0
|
85 |
self.pad_left = kernel_size // 2 - int(self.even)
|
86 |
self.pad_right = kernel_size // 2
|
87 |
self.stride = stride
|
|
|
90 |
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
91 |
self.register_buffer("filter", filter)
|
92 |
|
93 |
+
# Input [B, C, T]
|
94 |
def forward(self, x):
|
95 |
_, C, _ = x.shape
|
96 |
|
97 |
if self.padding:
|
98 |
+
x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
|
99 |
+
out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
|
|
|
|
100 |
|
101 |
+
return out
|
{alias_free_torch β alias_free_activation/torch}/resample.py
RENAMED
@@ -3,32 +3,37 @@
|
|
3 |
|
4 |
import torch.nn as nn
|
5 |
from torch.nn import functional as F
|
6 |
-
from .filter import LowPassFilter1d
|
7 |
-
from .filter import kaiser_sinc_filter1d
|
8 |
|
9 |
|
10 |
class UpSample1d(nn.Module):
|
11 |
def __init__(self, ratio=2, kernel_size=None):
|
12 |
super().__init__()
|
13 |
self.ratio = ratio
|
14 |
-
self.kernel_size =
|
|
|
|
|
15 |
self.stride = ratio
|
16 |
self.pad = self.kernel_size // ratio - 1
|
17 |
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
18 |
-
self.pad_right =
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
self.register_buffer("filter", filter)
|
23 |
|
24 |
# x: [B, C, T]
|
25 |
def forward(self, x):
|
26 |
_, C, _ = x.shape
|
27 |
|
28 |
-
x = F.pad(x, (self.pad, self.pad), mode=
|
29 |
x = self.ratio * F.conv_transpose1d(
|
30 |
-
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C
|
31 |
-
|
|
|
32 |
|
33 |
return x
|
34 |
|
@@ -37,13 +42,17 @@ class DownSample1d(nn.Module):
|
|
37 |
def __init__(self, ratio=2, kernel_size=None):
|
38 |
super().__init__()
|
39 |
self.ratio = ratio
|
40 |
-
self.kernel_size =
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def forward(self, x):
|
47 |
xx = self.lowpass(x)
|
48 |
|
49 |
-
return xx
|
|
|
3 |
|
4 |
import torch.nn as nn
|
5 |
from torch.nn import functional as F
|
6 |
+
from alias_free_activation.torch.filter import LowPassFilter1d
|
7 |
+
from alias_free_activation.torch.filter import kaiser_sinc_filter1d
|
8 |
|
9 |
|
10 |
class UpSample1d(nn.Module):
|
11 |
def __init__(self, ratio=2, kernel_size=None):
|
12 |
super().__init__()
|
13 |
self.ratio = ratio
|
14 |
+
self.kernel_size = (
|
15 |
+
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
16 |
+
)
|
17 |
self.stride = ratio
|
18 |
self.pad = self.kernel_size // ratio - 1
|
19 |
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
20 |
+
self.pad_right = (
|
21 |
+
self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
22 |
+
)
|
23 |
+
filter = kaiser_sinc_filter1d(
|
24 |
+
cutoff=0.5 / ratio, half_width=0.6 / ratio, kernel_size=self.kernel_size
|
25 |
+
)
|
26 |
self.register_buffer("filter", filter)
|
27 |
|
28 |
# x: [B, C, T]
|
29 |
def forward(self, x):
|
30 |
_, C, _ = x.shape
|
31 |
|
32 |
+
x = F.pad(x, (self.pad, self.pad), mode="replicate")
|
33 |
x = self.ratio * F.conv_transpose1d(
|
34 |
+
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C
|
35 |
+
)
|
36 |
+
x = x[..., self.pad_left : -self.pad_right]
|
37 |
|
38 |
return x
|
39 |
|
|
|
42 |
def __init__(self, ratio=2, kernel_size=None):
|
43 |
super().__init__()
|
44 |
self.ratio = ratio
|
45 |
+
self.kernel_size = (
|
46 |
+
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
47 |
+
)
|
48 |
+
self.lowpass = LowPassFilter1d(
|
49 |
+
cutoff=0.5 / ratio,
|
50 |
+
half_width=0.6 / ratio,
|
51 |
+
stride=ratio,
|
52 |
+
kernel_size=self.kernel_size,
|
53 |
+
)
|
54 |
|
55 |
def forward(self, x):
|
56 |
xx = self.lowpass(x)
|
57 |
|
58 |
+
return xx
|
alias_free_cuda/anti_alias_activation_cuda.cu
DELETED
@@ -1,314 +0,0 @@
|
|
1 |
-
/* coding=utf-8
|
2 |
-
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
3 |
-
*
|
4 |
-
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
* you may not use this file except in compliance with the License.
|
6 |
-
* You may obtain a copy of the License at
|
7 |
-
*
|
8 |
-
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
*
|
10 |
-
* Unless required by applicable law or agreed to in writing, software
|
11 |
-
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
* See the License for the specific language governing permissions and
|
14 |
-
* limitations under the License.
|
15 |
-
*/
|
16 |
-
|
17 |
-
#include <ATen/ATen.h>
|
18 |
-
#include <cuda.h>
|
19 |
-
#include <cuda_runtime.h>
|
20 |
-
#include <cuda_fp16.h>
|
21 |
-
#include <cuda_profiler_api.h>
|
22 |
-
#include <ATen/cuda/CUDAContext.h>
|
23 |
-
#include <torch/extension.h>
|
24 |
-
#include "type_shim.h"
|
25 |
-
#include <assert.h>
|
26 |
-
#include <cfloat>
|
27 |
-
#include <limits>
|
28 |
-
#include <stdint.h>
|
29 |
-
#include <c10/macros/Macros.h>
|
30 |
-
|
31 |
-
namespace {
|
32 |
-
|
33 |
-
/*
|
34 |
-
template <typename Datatype, int ELEMENTS_PER_LDG>
|
35 |
-
__device__ __inline__ void copy_vector(Datatype *dst, const Datatype *src);
|
36 |
-
|
37 |
-
template <>
|
38 |
-
__device__ __inline__ void copy_vector<c10::BFloat16, 1>(c10::BFloat16 *dst, const c10::BFloat16 *src) { *dst = *src; }
|
39 |
-
|
40 |
-
template <>
|
41 |
-
__device__ __inline__ void copy_vector<c10::BFloat16, 4>(c10::BFloat16 *dst, const c10::BFloat16 *src) { *((float2*) dst) = *((float2*) src); }
|
42 |
-
|
43 |
-
template <>
|
44 |
-
__device__ __inline__ void copy_vector<c10::Half, 1>(c10::Half *dst, const c10::Half *src) { *dst = *src; }
|
45 |
-
|
46 |
-
template <>
|
47 |
-
__device__ __inline__ void copy_vector<c10::Half, 4>(c10::Half *dst, const c10::Half *src) { *((float2*) dst) = *((float2*) src); }
|
48 |
-
|
49 |
-
template <>
|
50 |
-
__device__ __inline__ void copy_vector<uint8_t, 1>(uint8_t *dst, const uint8_t *src) { *dst = *src; }
|
51 |
-
|
52 |
-
template <>
|
53 |
-
__device__ __inline__ void copy_vector<uint8_t, 4>(uint8_t *dst, const uint8_t *src) {*((half2*) dst) = *((half2*) src); }
|
54 |
-
|
55 |
-
int log2_ceil(int value) {
|
56 |
-
int log2_value = 0;
|
57 |
-
while ((1 << log2_value) < value) ++log2_value;
|
58 |
-
return log2_value;
|
59 |
-
}
|
60 |
-
|
61 |
-
template<typename T>
|
62 |
-
struct Add {
|
63 |
-
__device__ __forceinline__ T operator()(T a, T b) const {
|
64 |
-
return a + b;
|
65 |
-
}
|
66 |
-
};
|
67 |
-
|
68 |
-
template<typename T>
|
69 |
-
struct Max {
|
70 |
-
__device__ __forceinline__ T operator()(T a, T b) const {
|
71 |
-
return a < b ? b : a;
|
72 |
-
}
|
73 |
-
};
|
74 |
-
|
75 |
-
template <typename T>
|
76 |
-
__device__ __forceinline__ T WARP_SHFL_XOR_NATIVE(T value, int laneMask, int width = warpSize, unsigned int mask = 0xffffffff)
|
77 |
-
{
|
78 |
-
#if CUDA_VERSION >= 9000
|
79 |
-
return __shfl_xor_sync(mask, value, laneMask, width);
|
80 |
-
#else
|
81 |
-
return __shfl_xor(value, laneMask, width);
|
82 |
-
#endif
|
83 |
-
}
|
84 |
-
|
85 |
-
template <typename acc_t, int WARP_BATCH, int WARP_SIZE, template<typename> class ReduceOp>
|
86 |
-
__device__ __forceinline__ void warp_reduce(acc_t* sum) {
|
87 |
-
ReduceOp<acc_t> r;
|
88 |
-
#pragma unroll
|
89 |
-
for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
|
90 |
-
#pragma unroll
|
91 |
-
for (int i = 0; i < WARP_BATCH; ++i) {
|
92 |
-
acc_t b = WARP_SHFL_XOR_NATIVE(sum[i], offset, WARP_SIZE);
|
93 |
-
sum[i] = r(sum[i], b);
|
94 |
-
}
|
95 |
-
}
|
96 |
-
}
|
97 |
-
*/
|
98 |
-
|
99 |
-
template <typename input_t, typename output_t, typename acc_t>
|
100 |
-
__global__ void anti_alias_activation_forward(
|
101 |
-
output_t *dst,
|
102 |
-
const input_t *src,
|
103 |
-
const input_t *ftr,
|
104 |
-
const input_t *alpha,
|
105 |
-
const input_t *beta,
|
106 |
-
int batch_size,
|
107 |
-
int channels,
|
108 |
-
int seq_len)
|
109 |
-
{
|
110 |
-
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
|
111 |
-
constexpr int ELEMENTS_PER_LDG_STG = 1; //(WARP_ITERATIONS < 4) ? 1 : 4;
|
112 |
-
constexpr int BUFFER_SIZE = 32;
|
113 |
-
constexpr int FILTER_SIZE = 12;
|
114 |
-
constexpr int HALF_FILTER_SIZE = 6;
|
115 |
-
constexpr int REPLICATION_PAD = 5; // 5 on each side
|
116 |
-
|
117 |
-
// blockDim/threadIdx = (128, 1, 1)
|
118 |
-
// gridDim/blockIdx = (seq_blocks, channels, batches)
|
119 |
-
int block_offset = (blockIdx.x * 128 * BUFFER_SIZE + seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
120 |
-
int local_offset = threadIdx.x * BUFFER_SIZE;
|
121 |
-
int seq_offset = blockIdx.x * 128 * BUFFER_SIZE + local_offset;
|
122 |
-
|
123 |
-
|
124 |
-
//int intermediate_seq_len = seq_len * 2 - 1 + 4 * REPLICATION_PAD;
|
125 |
-
//int intermediate_block_offset = (blockIdx.x * 128 * BUFFER_SIZE * 2 + intermediate_seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
126 |
-
//int intermediate_local_offset = threadIdx.x * BUFFER_SIZE * 2;
|
127 |
-
|
128 |
-
int output_seq_len = seq_len * 2 ; //
|
129 |
-
int output_block_offset = (blockIdx.x * 128 * BUFFER_SIZE * 2 + output_seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
130 |
-
int output_local_offset = threadIdx.x * BUFFER_SIZE * 2;
|
131 |
-
int output_seq_offset = blockIdx.x * 128 * BUFFER_SIZE *2 + output_local_offset;
|
132 |
-
// get values needed for replication padding before moving pointer
|
133 |
-
const input_t *right_most_pntr = src + (seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
134 |
-
input_t seq_left_most_value = right_most_pntr[0];
|
135 |
-
input_t seq_right_most_value = right_most_pntr[seq_len - 1];
|
136 |
-
|
137 |
-
src += block_offset + local_offset;
|
138 |
-
dst += output_block_offset + output_local_offset ;
|
139 |
-
alpha = alpha + blockIdx.y;
|
140 |
-
input_t alpha_val = expf(alpha[0]);
|
141 |
-
beta = beta + blockIdx.y;
|
142 |
-
input_t beta_val = expf(beta[0]);
|
143 |
-
// load data from global memory
|
144 |
-
input_t elements[2*FILTER_SIZE+2*BUFFER_SIZE] = {0};
|
145 |
-
input_t intermediates[2*FILTER_SIZE+2*BUFFER_SIZE] = {0};
|
146 |
-
//output_t output[2*BUFFER_SIZE];
|
147 |
-
input_t filter[FILTER_SIZE];
|
148 |
-
//input_t temp_data[ELEMENTS_PER_LDG_STG];
|
149 |
-
//uint8_t temp_mask[ELEMENTS_PER_LDG_STG];
|
150 |
-
|
151 |
-
#pragma unroll
|
152 |
-
for (int it = 0; it < FILTER_SIZE; it+=1) {
|
153 |
-
filter[it] = ftr[it];
|
154 |
-
}
|
155 |
-
|
156 |
-
|
157 |
-
#pragma unroll
|
158 |
-
for (int it = -HALF_FILTER_SIZE; it < BUFFER_SIZE + HALF_FILTER_SIZE ; it+=1) {
|
159 |
-
int element_index = seq_offset + it;
|
160 |
-
if ((element_index < 0) && (element_index >= -REPLICATION_PAD)) {
|
161 |
-
elements[2*(HALF_FILTER_SIZE+it)] = 2*seq_left_most_value;
|
162 |
-
}
|
163 |
-
if ((element_index >= seq_len) && (element_index < seq_len + REPLICATION_PAD)) {
|
164 |
-
elements[2*(HALF_FILTER_SIZE+it)] = 2*seq_right_most_value;
|
165 |
-
}
|
166 |
-
if ((element_index >= 0) && (element_index < seq_len)) {
|
167 |
-
elements[2*(HALF_FILTER_SIZE+it)] = 2*src[it];
|
168 |
-
}
|
169 |
-
}
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
// apply filter
|
174 |
-
#pragma unroll
|
175 |
-
for (int it = 0; it < (2 * BUFFER_SIZE + 2*FILTER_SIZE); it+=1) {
|
176 |
-
input_t acc = 0.0;
|
177 |
-
|
178 |
-
int element_index = output_seq_offset + it; // index for output
|
179 |
-
#pragma unroll
|
180 |
-
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx+=1){
|
181 |
-
if ((element_index + f_idx) >= 0){
|
182 |
-
acc += filter[f_idx] * elements[it+f_idx];
|
183 |
-
}
|
184 |
-
}
|
185 |
-
intermediates[it] = acc;
|
186 |
-
}
|
187 |
-
|
188 |
-
double no_div_by_zero = 0.000000001;
|
189 |
-
#pragma unroll
|
190 |
-
for (int it = 0; it < 12 + 2 * BUFFER_SIZE; it++) {
|
191 |
-
intermediates[it] += (1.0/(beta_val + no_div_by_zero)) * sinf(intermediates[it] * alpha_val) * sinf(intermediates[it] * alpha_val);
|
192 |
-
}
|
193 |
-
|
194 |
-
|
195 |
-
// now copy to output
|
196 |
-
#pragma unroll
|
197 |
-
for (int it = 0; it < 2*BUFFER_SIZE; it+=1){
|
198 |
-
int element_index = output_seq_offset + it;
|
199 |
-
if (element_index < output_seq_len) {
|
200 |
-
dst[it] = intermediates[it+6];
|
201 |
-
}
|
202 |
-
}
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
// for (int it = 0; it < BUFFER_SIZE; it+=ELEMENTS_PER_LDG_STG) {
|
207 |
-
// int element_index = seq_offset + it;
|
208 |
-
// if (element_index < seq_len) {
|
209 |
-
// dst[it] = output[it];
|
210 |
-
// }
|
211 |
-
// }
|
212 |
-
|
213 |
-
|
214 |
-
// // Upsample convolution
|
215 |
-
// for (int it = 0; it < 2 * BUFFER_SIZE + 12; it+=1) {
|
216 |
-
// input_t acc = 0.0;
|
217 |
-
|
218 |
-
// for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx+=1){
|
219 |
-
// acc += filter[f_idx] * elements[it+f_idx];
|
220 |
-
// }
|
221 |
-
// intermediates[it] = acc;
|
222 |
-
// }
|
223 |
-
|
224 |
-
// // correct the corners of intermediates
|
225 |
-
// if (seq_offset == 0) {
|
226 |
-
// for (int it = 0; it < 6; it+=1)
|
227 |
-
// intermediates[it] = 0;
|
228 |
-
// }
|
229 |
-
|
230 |
-
// if (seq_offset + 32 >= seq_len) {
|
231 |
-
// int offset = seq_len % 32 == 0 ? 32 : seq_len % 32;
|
232 |
-
|
233 |
-
// for (int it = 0; it < 6; it++) {
|
234 |
-
// intermediates[6+2*offset+it] = 0;
|
235 |
-
// }
|
236 |
-
// }
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
// for (int it = 0; it < BUFFER_SIZE; it+=ELEMENTS_PER_LDG_STG) {
|
242 |
-
// int element_index = seq_offset + it;
|
243 |
-
// if (element_index < seq_len) {
|
244 |
-
// dst[it] = output[it];
|
245 |
-
// }
|
246 |
-
// }
|
247 |
-
}
|
248 |
-
|
249 |
-
template<typename input_t, typename output_t, typename acc_t>
|
250 |
-
void dispatch_anti_alias_activation_forward(
|
251 |
-
output_t *dst,
|
252 |
-
const input_t *src,
|
253 |
-
const input_t *ftr,
|
254 |
-
const input_t *alpha,
|
255 |
-
const input_t *beta,
|
256 |
-
int batch_size,
|
257 |
-
int channels,
|
258 |
-
int seq_len)
|
259 |
-
{
|
260 |
-
if (seq_len == 0) {
|
261 |
-
return;
|
262 |
-
} else {
|
263 |
-
// use 128 threads per block to maximimize gpu utilization
|
264 |
-
constexpr int threads_per_block = 128;
|
265 |
-
constexpr int seq_len_per_block = 4096;
|
266 |
-
int blocks_per_seq_len = (seq_len + seq_len_per_block - 1) / seq_len_per_block;
|
267 |
-
dim3 blocks(blocks_per_seq_len, channels, batch_size);
|
268 |
-
dim3 threads(threads_per_block, 1, 1);
|
269 |
-
|
270 |
-
anti_alias_activation_forward<input_t, output_t, acc_t>
|
271 |
-
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, ftr, alpha, beta, batch_size, channels, seq_len);
|
272 |
-
}
|
273 |
-
}
|
274 |
-
}
|
275 |
-
|
276 |
-
namespace anti_alias_activation {
|
277 |
-
|
278 |
-
torch::Tensor fwd_cuda(torch::Tensor const& input, torch::Tensor const& filter, torch::Tensor const& alpha, torch::Tensor const& beta)
|
279 |
-
{
|
280 |
-
// input is a 4d tensor with dimensions [batches, attn_heads, seq_len, seq_len]
|
281 |
-
const int batches = input.size(0);
|
282 |
-
const int channels = input.size(1);
|
283 |
-
const int seq_len = input.size(2);
|
284 |
-
|
285 |
-
// Output
|
286 |
-
auto act_options = input.options().requires_grad(false);
|
287 |
-
int output_seq_len = seq_len*2; // we'll be dilating between each element by interspersing with zeros
|
288 |
-
|
289 |
-
torch::Tensor anti_alias_activation_results =
|
290 |
-
torch::empty({batches, channels, output_seq_len}, act_options);
|
291 |
-
|
292 |
-
// Softmax Intermediate Result Ptr
|
293 |
-
void* input_ptr = static_cast<void*>(input.data_ptr());
|
294 |
-
void* filter_ptr = static_cast<void*>(filter.data_ptr());
|
295 |
-
void* alpha_ptr = static_cast<void*>(alpha.data_ptr());
|
296 |
-
void* beta_ptr = static_cast<void*>(beta.data_ptr());
|
297 |
-
void* anti_alias_activation_results_ptr = static_cast<void*>(anti_alias_activation_results.data_ptr());
|
298 |
-
|
299 |
-
DISPATCH_FLOAT_HALF_AND_BFLOAT(
|
300 |
-
input.scalar_type(),
|
301 |
-
"dispatch anti alias activation_forward",
|
302 |
-
dispatch_anti_alias_activation_forward<scalar_t, scalar_t, float>(
|
303 |
-
reinterpret_cast<scalar_t*>(anti_alias_activation_results_ptr),
|
304 |
-
reinterpret_cast<const scalar_t*>(input_ptr),
|
305 |
-
reinterpret_cast<const scalar_t*>(filter_ptr),
|
306 |
-
reinterpret_cast<const scalar_t*>(alpha_ptr),
|
307 |
-
reinterpret_cast<const scalar_t*>(beta_ptr),
|
308 |
-
batches,
|
309 |
-
channels,
|
310 |
-
seq_len);
|
311 |
-
);
|
312 |
-
return anti_alias_activation_results;
|
313 |
-
}
|
314 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alias_free_cuda/test_activation.py
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
-
# Licensed under the MIT license.
|
3 |
-
|
4 |
-
import math
|
5 |
-
import torch
|
6 |
-
import alias_free_cuda
|
7 |
-
from alias_free_cuda import activation1d
|
8 |
-
from activations import Snake, SnakeBeta
|
9 |
-
|
10 |
-
def test_load_fused_kernels():
|
11 |
-
try:
|
12 |
-
import alias_free_cuda
|
13 |
-
import torch
|
14 |
-
print("[Success] load_fused_kernels")
|
15 |
-
except ImportError as e:
|
16 |
-
print("[Fail] load_fused_kernels")
|
17 |
-
raise e
|
18 |
-
|
19 |
-
def test_anti_alias_activation():
|
20 |
-
data = torch.rand((10, 10, 50000), device='cuda')
|
21 |
-
|
22 |
-
# check activations.Snake cuda vs. torch
|
23 |
-
fused_anti_alias_activation = activation1d.Activation1d(activation=Snake(10), fused=True).cuda()
|
24 |
-
fused_activation_output = fused_anti_alias_activation(data)
|
25 |
-
|
26 |
-
torch_anti_alias_activation = activation1d.Activation1d(activation=Snake(10), fused=False).cuda()
|
27 |
-
torch_activation_output = torch_anti_alias_activation(data)
|
28 |
-
|
29 |
-
test_result = (fused_activation_output - torch_activation_output).abs()
|
30 |
-
|
31 |
-
while test_result.dim() != 1:
|
32 |
-
test_result = test_result.mean(dim=-1)
|
33 |
-
|
34 |
-
diff = test_result.mean(dim=-1)
|
35 |
-
|
36 |
-
if diff <= 1e-3:
|
37 |
-
print(
|
38 |
-
f"\n[Success] test_fused_anti_alias_activation"
|
39 |
-
f"\n > mean_difference={diff}"
|
40 |
-
f"\n > fused_values={fused_activation_output[-1][-1][-100:].tolist()}"
|
41 |
-
f"\n > torch_values={torch_activation_output[-1][-1][-100:].tolist()}"
|
42 |
-
)
|
43 |
-
else:
|
44 |
-
print(
|
45 |
-
f"\n[Fail] test_fused_anti_alias_activation"
|
46 |
-
f"\n > mean_difference={diff}, "
|
47 |
-
f"\n > fused_values={fused_activation_output[-1][-1][-30:].tolist()}, "
|
48 |
-
f"\n > torch_values={torch_activation_output[-1][-1][-30:].tolist()}"
|
49 |
-
)
|
50 |
-
|
51 |
-
if __name__ == "__main__":
|
52 |
-
from alias_free_cuda import load
|
53 |
-
load.load()
|
54 |
-
test_load_fused_kernels()
|
55 |
-
test_anti_alias_activation()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alias_free_cuda/test_activation_snake_beta.py
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
-
# Licensed under the MIT license.
|
3 |
-
|
4 |
-
import math
|
5 |
-
import torch
|
6 |
-
import alias_free_cuda
|
7 |
-
from alias_free_cuda import activation1d
|
8 |
-
from activations import Snake, SnakeBeta
|
9 |
-
|
10 |
-
def test_load_fused_kernels():
|
11 |
-
try:
|
12 |
-
import alias_free_cuda
|
13 |
-
import torch
|
14 |
-
print("[Success] load_fused_kernels")
|
15 |
-
except ImportError as e:
|
16 |
-
print("[Fail] load_fused_kernels")
|
17 |
-
raise e
|
18 |
-
|
19 |
-
def test_anti_alias_activation():
|
20 |
-
data = torch.rand((10, 10, 50000), device='cuda')
|
21 |
-
|
22 |
-
# check activations.Snake cuda vs. torch
|
23 |
-
fused_anti_alias_activation = activation1d.Activation1d(activation=SnakeBeta(10), fused=True).cuda()
|
24 |
-
fused_activation_output = fused_anti_alias_activation(data)
|
25 |
-
|
26 |
-
torch_anti_alias_activation = activation1d.Activation1d(activation=SnakeBeta(10), fused=False).cuda()
|
27 |
-
torch_activation_output = torch_anti_alias_activation(data)
|
28 |
-
|
29 |
-
test_result = (fused_activation_output - torch_activation_output).abs()
|
30 |
-
|
31 |
-
while test_result.dim() != 1:
|
32 |
-
test_result = test_result.mean(dim=-1)
|
33 |
-
|
34 |
-
diff = test_result.mean(dim=-1)
|
35 |
-
|
36 |
-
if diff <= 1e-3:
|
37 |
-
print(
|
38 |
-
f"\n[Success] test_fused_anti_alias_activation"
|
39 |
-
f"\n > mean_difference={diff}"
|
40 |
-
f"\n > fused_values={fused_activation_output[-1][-1][-100:].tolist()}"
|
41 |
-
f"\n > torch_values={torch_activation_output[-1][-1][-100:].tolist()}"
|
42 |
-
)
|
43 |
-
else:
|
44 |
-
print(
|
45 |
-
f"\n[Fail] test_fused_anti_alias_activation"
|
46 |
-
f"\n > mean_difference={diff}, "
|
47 |
-
f"\n > fused_values={fused_activation_output[-1][-1][-30:].tolist()}, "
|
48 |
-
f"\n > torch_values={torch_activation_output[-1][-1][-30:].tolist()}"
|
49 |
-
)
|
50 |
-
|
51 |
-
if __name__ == "__main__":
|
52 |
-
from alias_free_cuda import load
|
53 |
-
load.load()
|
54 |
-
test_load_fused_kernels()
|
55 |
-
test_anti_alias_activation()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alias_free_cuda/type_shim.h
DELETED
@@ -1,97 +0,0 @@
|
|
1 |
-
/* coding=utf-8
|
2 |
-
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
3 |
-
*
|
4 |
-
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
* you may not use this file except in compliance with the License.
|
6 |
-
* You may obtain a copy of the License at
|
7 |
-
*
|
8 |
-
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
*
|
10 |
-
* Unless required by applicable law or agreed to in writing, software
|
11 |
-
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
* See the License for the specific language governing permissions and
|
14 |
-
* limitations under the License.
|
15 |
-
*/
|
16 |
-
|
17 |
-
|
18 |
-
#include <ATen/ATen.h>
|
19 |
-
#include "compat.h"
|
20 |
-
|
21 |
-
|
22 |
-
#define DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, NAME, ...) \
|
23 |
-
switch(TYPE) \
|
24 |
-
{ \
|
25 |
-
case at::ScalarType::Float: \
|
26 |
-
{ \
|
27 |
-
using scalar_t = float; \
|
28 |
-
__VA_ARGS__; \
|
29 |
-
break; \
|
30 |
-
} \
|
31 |
-
case at::ScalarType::Half: \
|
32 |
-
{ \
|
33 |
-
using scalar_t = at::Half; \
|
34 |
-
__VA_ARGS__; \
|
35 |
-
break; \
|
36 |
-
} \
|
37 |
-
case at::ScalarType::BFloat16: \
|
38 |
-
{ \
|
39 |
-
using scalar_t = at::BFloat16; \
|
40 |
-
__VA_ARGS__; \
|
41 |
-
break; \
|
42 |
-
} \
|
43 |
-
default: \
|
44 |
-
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
|
45 |
-
}
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
#define DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
|
50 |
-
switch(TYPEIN) \
|
51 |
-
{ \
|
52 |
-
case at::ScalarType::Float: \
|
53 |
-
{ \
|
54 |
-
using scalar_t_in = float; \
|
55 |
-
switch(TYPEOUT) \
|
56 |
-
{ \
|
57 |
-
case at::ScalarType::Float: \
|
58 |
-
{ \
|
59 |
-
using scalar_t_out = float; \
|
60 |
-
__VA_ARGS__; \
|
61 |
-
break; \
|
62 |
-
} \
|
63 |
-
case at::ScalarType::Half: \
|
64 |
-
{ \
|
65 |
-
using scalar_t_out = at::Half; \
|
66 |
-
__VA_ARGS__; \
|
67 |
-
break; \
|
68 |
-
} \
|
69 |
-
case at::ScalarType::BFloat16: \
|
70 |
-
{ \
|
71 |
-
using scalar_t_out = at::BFloat16; \
|
72 |
-
__VA_ARGS__; \
|
73 |
-
break; \
|
74 |
-
} \
|
75 |
-
default: \
|
76 |
-
AT_ERROR(#NAME, " not implemented for '", toString(TYPEOUT), "'"); \
|
77 |
-
} \
|
78 |
-
break; \
|
79 |
-
} \
|
80 |
-
case at::ScalarType::Half: \
|
81 |
-
{ \
|
82 |
-
using scalar_t_in = at::Half; \
|
83 |
-
using scalar_t_out = at::Half; \
|
84 |
-
__VA_ARGS__; \
|
85 |
-
break; \
|
86 |
-
} \
|
87 |
-
case at::ScalarType::BFloat16: \
|
88 |
-
{ \
|
89 |
-
using scalar_t_in = at::BFloat16; \
|
90 |
-
using scalar_t_out = at::BFloat16; \
|
91 |
-
__VA_ARGS__; \
|
92 |
-
break; \
|
93 |
-
} \
|
94 |
-
default: \
|
95 |
-
AT_ERROR(#NAME, " not implemented for '", toString(TYPEIN), "'"); \
|
96 |
-
}
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bigvgan.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
# Licensed under the MIT license.
|
3 |
|
4 |
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
@@ -7,78 +7,127 @@
|
|
7 |
import os
|
8 |
import json
|
9 |
from pathlib import Path
|
10 |
-
|
11 |
-
from collections import namedtuple
|
12 |
-
from typing import Optional, List, Union, Dict
|
13 |
|
14 |
import torch
|
15 |
-
import torch.nn.functional as F
|
16 |
import torch.nn as nn
|
17 |
from torch.nn import Conv1d, ConvTranspose1d
|
18 |
from torch.nn.utils import weight_norm, remove_weight_norm
|
19 |
|
20 |
import activations
|
21 |
from utils import init_weights, get_padding
|
22 |
-
from
|
23 |
from env import AttrDict
|
24 |
|
25 |
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
|
26 |
|
|
|
27 |
def load_hparams_from_json(path) -> AttrDict:
|
28 |
with open(path) as f:
|
29 |
data = f.read()
|
30 |
-
|
31 |
-
|
32 |
|
33 |
class AMPBlock1(torch.nn.Module):
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
self.h = h
|
37 |
|
38 |
-
self.convs1 = nn.ModuleList(
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
self.convs1.apply(init_weights)
|
47 |
|
48 |
-
self.convs2 = nn.ModuleList(
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
self.convs2.apply(init_weights)
|
57 |
|
58 |
-
self.num_layers = len(self.convs1) + len(
|
|
|
|
|
59 |
|
60 |
-
#
|
61 |
if self.h.get("use_cuda_kernel", False):
|
62 |
-
|
63 |
-
|
|
|
|
|
64 |
Activation1d = CudaActivation1d
|
65 |
else:
|
66 |
Activation1d = TorchActivation1d
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
else:
|
81 |
-
raise NotImplementedError(
|
|
|
|
|
82 |
|
83 |
def forward(self, x):
|
84 |
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
@@ -99,51 +148,93 @@ class AMPBlock1(torch.nn.Module):
|
|
99 |
|
100 |
|
101 |
class AMPBlock2(torch.nn.Module):
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
self.h = h
|
105 |
|
106 |
-
self.convs = nn.ModuleList(
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
self.convs.apply(init_weights)
|
113 |
|
114 |
-
self.num_layers = len(self.convs)
|
115 |
|
116 |
-
#
|
117 |
if self.h.get("use_cuda_kernel", False):
|
118 |
-
|
119 |
-
|
|
|
|
|
120 |
Activation1d = CudaActivation1d
|
121 |
else:
|
122 |
Activation1d = TorchActivation1d
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
else:
|
137 |
-
raise NotImplementedError(
|
|
|
|
|
138 |
|
139 |
def forward(self, x):
|
140 |
-
for c, a in zip
|
141 |
xt = a(x)
|
142 |
xt = c(xt)
|
143 |
x = xt + x
|
144 |
|
145 |
-
return x
|
146 |
-
|
147 |
def remove_weight_norm(self):
|
148 |
for l in self.convs:
|
149 |
remove_weight_norm(l)
|
@@ -157,83 +248,121 @@ class BigVGAN(
|
|
157 |
docs_url="https://github.com/NVIDIA/BigVGAN/blob/main/README.md",
|
158 |
pipeline_tag="audio-to-audio",
|
159 |
license="mit",
|
160 |
-
tags=["neural-vocoder", "audio-generation", "arxiv:2206.04658"]
|
161 |
):
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
h
|
168 |
-
use_cuda_kernel:
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
self.h = h
|
172 |
-
self.h["use_cuda_kernel"] = use_cuda_kernel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
self.num_kernels = len(h.resblock_kernel_sizes)
|
175 |
self.num_upsamples = len(h.upsample_rates)
|
176 |
|
177 |
-
#
|
178 |
-
self.conv_pre = weight_norm(
|
|
|
|
|
179 |
|
180 |
-
#
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
#
|
184 |
self.ups = nn.ModuleList()
|
185 |
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
186 |
-
self.ups.append(
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
#
|
193 |
self.resblocks = nn.ModuleList()
|
194 |
for i in range(len(self.ups)):
|
195 |
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
196 |
-
for j, (k, d) in enumerate(
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
|
203 |
-
Activation1d = CudaActivation1d
|
204 |
-
else:
|
205 |
-
Activation1d = TorchActivation1d
|
206 |
|
207 |
-
#
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
self.use_bias_at_final = h.get("use_bias_at_final", True)
|
219 |
-
self.conv_post = weight_norm(
|
220 |
-
ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final
|
221 |
-
)
|
222 |
|
223 |
-
#
|
224 |
for i in range(len(self.ups)):
|
225 |
self.ups[i].apply(init_weights)
|
226 |
self.conv_post.apply(init_weights)
|
227 |
-
|
228 |
-
#
|
229 |
self.use_tanh_at_final = h.get("use_tanh_at_final", True)
|
230 |
|
231 |
def forward(self, x):
|
232 |
-
#
|
233 |
x = self.conv_pre(x)
|
234 |
|
235 |
for i in range(self.num_upsamples):
|
236 |
-
#
|
237 |
for i_up in range(len(self.ups[i])):
|
238 |
x = self.ups[i][i_up](x)
|
239 |
# AMP blocks
|
@@ -245,20 +374,20 @@ class BigVGAN(
|
|
245 |
xs += self.resblocks[i * self.num_kernels + j](x)
|
246 |
x = xs / self.num_kernels
|
247 |
|
248 |
-
#
|
249 |
x = self.activation_post(x)
|
250 |
x = self.conv_post(x)
|
251 |
-
#
|
252 |
if self.use_tanh_at_final:
|
253 |
x = torch.tanh(x)
|
254 |
else:
|
255 |
-
x = torch.clamp(x, min=-1
|
256 |
|
257 |
return x
|
258 |
|
259 |
def remove_weight_norm(self):
|
260 |
try:
|
261 |
-
print(
|
262 |
for l in self.ups:
|
263 |
for l_i in l:
|
264 |
remove_weight_norm(l_i)
|
@@ -267,23 +396,18 @@ class BigVGAN(
|
|
267 |
remove_weight_norm(self.conv_pre)
|
268 |
remove_weight_norm(self.conv_post)
|
269 |
except ValueError:
|
270 |
-
print(
|
271 |
pass
|
272 |
|
273 |
-
|
274 |
-
# additional methods for huggingface_hub support
|
275 |
-
##################################################################
|
276 |
def _save_pretrained(self, save_directory: Path) -> None:
|
277 |
"""Save weights and config.json from a Pytorch model to a local directory."""
|
278 |
|
279 |
-
model_path = save_directory /
|
280 |
-
torch.save(
|
281 |
-
{'generator': self.state_dict()},
|
282 |
-
model_path
|
283 |
-
)
|
284 |
|
285 |
-
config_path = save_directory /
|
286 |
-
with open(config_path,
|
287 |
json.dump(self.h, config_file, indent=4)
|
288 |
|
289 |
@classmethod
|
@@ -298,23 +422,21 @@ class BigVGAN(
|
|
298 |
resume_download: bool,
|
299 |
local_files_only: bool,
|
300 |
token: Union[str, bool, None],
|
301 |
-
map_location: str = "cpu",
|
302 |
-
strict: bool = False,
|
303 |
use_cuda_kernel: bool = False,
|
304 |
**model_kwargs,
|
305 |
):
|
306 |
"""Load Pytorch pretrained weights and return the loaded model."""
|
307 |
|
308 |
-
|
309 |
-
# download and load hyperparameters (h) used by BigVGAN
|
310 |
-
##################################################################
|
311 |
if os.path.isdir(model_id):
|
312 |
print("Loading config.json from local directory")
|
313 |
-
config_file = os.path.join(model_id,
|
314 |
else:
|
315 |
config_file = hf_hub_download(
|
316 |
repo_id=model_id,
|
317 |
-
filename=
|
318 |
revision=revision,
|
319 |
cache_dir=cache_dir,
|
320 |
force_download=force_download,
|
@@ -325,26 +447,28 @@ class BigVGAN(
|
|
325 |
)
|
326 |
h = load_hparams_from_json(config_file)
|
327 |
|
328 |
-
##################################################################
|
329 |
# instantiate BigVGAN using h
|
330 |
-
##################################################################
|
331 |
if use_cuda_kernel:
|
332 |
-
print(
|
333 |
-
|
334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
model = cls(h, use_cuda_kernel=use_cuda_kernel)
|
336 |
|
337 |
-
|
338 |
-
# download and load pretrained generator weight
|
339 |
-
##################################################################
|
340 |
if os.path.isdir(model_id):
|
341 |
print("Loading weights from local directory")
|
342 |
-
model_file = os.path.join(model_id,
|
343 |
else:
|
344 |
print(f"Loading weights from {model_id}")
|
345 |
model_file = hf_hub_download(
|
346 |
repo_id=model_id,
|
347 |
-
filename=
|
348 |
revision=revision,
|
349 |
cache_dir=cache_dir,
|
350 |
force_download=force_download,
|
@@ -352,15 +476,17 @@ class BigVGAN(
|
|
352 |
resume_download=resume_download,
|
353 |
token=token,
|
354 |
local_files_only=local_files_only,
|
355 |
-
|
356 |
-
|
357 |
checkpoint_dict = torch.load(model_file, map_location=map_location)
|
358 |
|
359 |
try:
|
360 |
-
model.load_state_dict(checkpoint_dict[
|
361 |
except RuntimeError:
|
362 |
-
print(
|
|
|
|
|
363 |
model.remove_weight_norm()
|
364 |
-
model.load_state_dict(checkpoint_dict[
|
365 |
|
366 |
-
return model
|
|
|
1 |
+
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
# Licensed under the MIT license.
|
3 |
|
4 |
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
|
|
7 |
import os
|
8 |
import json
|
9 |
from pathlib import Path
|
10 |
+
from typing import Optional, Union, Dict
|
|
|
|
|
11 |
|
12 |
import torch
|
|
|
13 |
import torch.nn as nn
|
14 |
from torch.nn import Conv1d, ConvTranspose1d
|
15 |
from torch.nn.utils import weight_norm, remove_weight_norm
|
16 |
|
17 |
import activations
|
18 |
from utils import init_weights, get_padding
|
19 |
+
from alias_free_activation.torch.act import Activation1d as TorchActivation1d
|
20 |
from env import AttrDict
|
21 |
|
22 |
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
|
23 |
|
24 |
+
|
25 |
def load_hparams_from_json(path) -> AttrDict:
|
26 |
with open(path) as f:
|
27 |
data = f.read()
|
28 |
+
return AttrDict(json.loads(data))
|
29 |
+
|
30 |
|
31 |
class AMPBlock1(torch.nn.Module):
|
32 |
+
"""
|
33 |
+
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
|
34 |
+
AMPBlock1 has additional self.convs2 that contains additional Conv1d layers with a fixed dilation=1 followed by each layer in self.convs1
|
35 |
+
|
36 |
+
Args:
|
37 |
+
h (AttrDict): Hyperparameters.
|
38 |
+
channels (int): Number of convolution channels.
|
39 |
+
kernel_size (int): Size of the convolution kernel. Default is 3.
|
40 |
+
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
|
41 |
+
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
h: AttrDict,
|
47 |
+
channels: int,
|
48 |
+
kernel_size: int = 3,
|
49 |
+
dilation: tuple = (1, 3, 5),
|
50 |
+
activation: str = None,
|
51 |
+
):
|
52 |
+
super().__init__()
|
53 |
+
|
54 |
self.h = h
|
55 |
|
56 |
+
self.convs1 = nn.ModuleList(
|
57 |
+
[
|
58 |
+
weight_norm(
|
59 |
+
Conv1d(
|
60 |
+
channels,
|
61 |
+
channels,
|
62 |
+
kernel_size,
|
63 |
+
stride=1,
|
64 |
+
dilation=d,
|
65 |
+
padding=get_padding(kernel_size, d),
|
66 |
+
)
|
67 |
+
)
|
68 |
+
for d in dilation
|
69 |
+
]
|
70 |
+
)
|
71 |
self.convs1.apply(init_weights)
|
72 |
|
73 |
+
self.convs2 = nn.ModuleList(
|
74 |
+
[
|
75 |
+
weight_norm(
|
76 |
+
Conv1d(
|
77 |
+
channels,
|
78 |
+
channels,
|
79 |
+
kernel_size,
|
80 |
+
stride=1,
|
81 |
+
dilation=1,
|
82 |
+
padding=get_padding(kernel_size, 1),
|
83 |
+
)
|
84 |
+
)
|
85 |
+
for _ in range(len(dilation))
|
86 |
+
]
|
87 |
+
)
|
88 |
self.convs2.apply(init_weights)
|
89 |
|
90 |
+
self.num_layers = len(self.convs1) + len(
|
91 |
+
self.convs2
|
92 |
+
) # Total number of conv layers
|
93 |
|
94 |
+
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
95 |
if self.h.get("use_cuda_kernel", False):
|
96 |
+
from alias_free_activation.cuda.activation1d import (
|
97 |
+
Activation1d as CudaActivation1d,
|
98 |
+
)
|
99 |
+
|
100 |
Activation1d = CudaActivation1d
|
101 |
else:
|
102 |
Activation1d = TorchActivation1d
|
103 |
|
104 |
+
# Activation functions
|
105 |
+
if activation == "snake":
|
106 |
+
self.activations = nn.ModuleList(
|
107 |
+
[
|
108 |
+
Activation1d(
|
109 |
+
activation=activations.Snake(
|
110 |
+
channels, alpha_logscale=h.snake_logscale
|
111 |
+
)
|
112 |
+
)
|
113 |
+
for _ in range(self.num_layers)
|
114 |
+
]
|
115 |
+
)
|
116 |
+
elif activation == "snakebeta":
|
117 |
+
self.activations = nn.ModuleList(
|
118 |
+
[
|
119 |
+
Activation1d(
|
120 |
+
activation=activations.SnakeBeta(
|
121 |
+
channels, alpha_logscale=h.snake_logscale
|
122 |
+
)
|
123 |
+
)
|
124 |
+
for _ in range(self.num_layers)
|
125 |
+
]
|
126 |
+
)
|
127 |
else:
|
128 |
+
raise NotImplementedError(
|
129 |
+
"activation incorrectly specified. check the config file and look for 'activation'."
|
130 |
+
)
|
131 |
|
132 |
def forward(self, x):
|
133 |
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
|
|
148 |
|
149 |
|
150 |
class AMPBlock2(torch.nn.Module):
|
151 |
+
"""
|
152 |
+
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
|
153 |
+
Unlike AMPBlock1, AMPBlock2 does not contain extra Conv1d layers with fixed dilation=1
|
154 |
+
|
155 |
+
Args:
|
156 |
+
h (AttrDict): Hyperparameters.
|
157 |
+
channels (int): Number of convolution channels.
|
158 |
+
kernel_size (int): Size of the convolution kernel. Default is 3.
|
159 |
+
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
|
160 |
+
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
|
161 |
+
"""
|
162 |
+
|
163 |
+
def __init__(
|
164 |
+
self,
|
165 |
+
h: AttrDict,
|
166 |
+
channels: int,
|
167 |
+
kernel_size: int = 3,
|
168 |
+
dilation: tuple = (1, 3, 5),
|
169 |
+
activation: str = None,
|
170 |
+
):
|
171 |
+
super().__init__()
|
172 |
+
|
173 |
self.h = h
|
174 |
|
175 |
+
self.convs = nn.ModuleList(
|
176 |
+
[
|
177 |
+
weight_norm(
|
178 |
+
Conv1d(
|
179 |
+
channels,
|
180 |
+
channels,
|
181 |
+
kernel_size,
|
182 |
+
stride=1,
|
183 |
+
dilation=d,
|
184 |
+
padding=get_padding(kernel_size, d),
|
185 |
+
)
|
186 |
+
)
|
187 |
+
for d in dilation
|
188 |
+
]
|
189 |
+
)
|
190 |
self.convs.apply(init_weights)
|
191 |
|
192 |
+
self.num_layers = len(self.convs) # Total number of conv layers
|
193 |
|
194 |
+
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
195 |
if self.h.get("use_cuda_kernel", False):
|
196 |
+
from alias_free_activation.cuda.activation1d import (
|
197 |
+
Activation1d as CudaActivation1d,
|
198 |
+
)
|
199 |
+
|
200 |
Activation1d = CudaActivation1d
|
201 |
else:
|
202 |
Activation1d = TorchActivation1d
|
203 |
|
204 |
+
# Activation functions
|
205 |
+
if activation == "snake":
|
206 |
+
self.activations = nn.ModuleList(
|
207 |
+
[
|
208 |
+
Activation1d(
|
209 |
+
activation=activations.Snake(
|
210 |
+
channels, alpha_logscale=h.snake_logscale
|
211 |
+
)
|
212 |
+
)
|
213 |
+
for _ in range(self.num_layers)
|
214 |
+
]
|
215 |
+
)
|
216 |
+
elif activation == "snakebeta":
|
217 |
+
self.activations = nn.ModuleList(
|
218 |
+
[
|
219 |
+
Activation1d(
|
220 |
+
activation=activations.SnakeBeta(
|
221 |
+
channels, alpha_logscale=h.snake_logscale
|
222 |
+
)
|
223 |
+
)
|
224 |
+
for _ in range(self.num_layers)
|
225 |
+
]
|
226 |
+
)
|
227 |
else:
|
228 |
+
raise NotImplementedError(
|
229 |
+
"activation incorrectly specified. check the config file and look for 'activation'."
|
230 |
+
)
|
231 |
|
232 |
def forward(self, x):
|
233 |
+
for c, a in zip(self.convs, self.activations):
|
234 |
xt = a(x)
|
235 |
xt = c(xt)
|
236 |
x = xt + x
|
237 |
|
|
|
|
|
238 |
def remove_weight_norm(self):
|
239 |
for l in self.convs:
|
240 |
remove_weight_norm(l)
|
|
|
248 |
docs_url="https://github.com/NVIDIA/BigVGAN/blob/main/README.md",
|
249 |
pipeline_tag="audio-to-audio",
|
250 |
license="mit",
|
251 |
+
tags=["neural-vocoder", "audio-generation", "arxiv:2206.04658"],
|
252 |
):
|
253 |
+
"""
|
254 |
+
BigVGAN is a neural vocoder model that applies anti-aliased periodic activation for residual blocks (resblocks).
|
255 |
+
New in BigVGAN-v2: it can optionally use optimized CUDA kernels for AMP (anti-aliased multi-periodicity) blocks.
|
256 |
+
|
257 |
+
Args:
|
258 |
+
h (AttrDict): Hyperparameters.
|
259 |
+
use_cuda_kernel (bool): If set to True, loads optimized CUDA kernels for AMP. This should be used for inference only, as training is not supported with CUDA kernels.
|
260 |
+
|
261 |
+
Note:
|
262 |
+
- The `use_cuda_kernel` parameter should be used for inference only, as training with CUDA kernels is not supported.
|
263 |
+
- Ensure that the activation function is correctly specified in the hyperparameters (h.activation).
|
264 |
+
"""
|
265 |
+
|
266 |
+
def __init__(self, h: AttrDict, use_cuda_kernel: bool = False):
|
267 |
+
super().__init__()
|
268 |
self.h = h
|
269 |
+
self.h["use_cuda_kernel"] = use_cuda_kernel
|
270 |
+
|
271 |
+
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
272 |
+
if self.h.get("use_cuda_kernel", False):
|
273 |
+
from alias_free_activation.cuda.activation1d import (
|
274 |
+
Activation1d as CudaActivation1d,
|
275 |
+
)
|
276 |
+
|
277 |
+
Activation1d = CudaActivation1d
|
278 |
+
else:
|
279 |
+
Activation1d = TorchActivation1d
|
280 |
|
281 |
self.num_kernels = len(h.resblock_kernel_sizes)
|
282 |
self.num_upsamples = len(h.upsample_rates)
|
283 |
|
284 |
+
# Pre-conv
|
285 |
+
self.conv_pre = weight_norm(
|
286 |
+
Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)
|
287 |
+
)
|
288 |
|
289 |
+
# Define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
|
290 |
+
if h.resblock == "1":
|
291 |
+
resblock_class = AMPBlock1
|
292 |
+
elif h.resblock == "2":
|
293 |
+
resblock_class = AMPBlock2
|
294 |
+
else:
|
295 |
+
raise ValueError(
|
296 |
+
f"Incorrect resblock class specified in hyperparameters. Got {h.resblock}"
|
297 |
+
)
|
298 |
|
299 |
+
# Transposed conv-based upsamplers. does not apply anti-aliasing
|
300 |
self.ups = nn.ModuleList()
|
301 |
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
302 |
+
self.ups.append(
|
303 |
+
nn.ModuleList(
|
304 |
+
[
|
305 |
+
weight_norm(
|
306 |
+
ConvTranspose1d(
|
307 |
+
h.upsample_initial_channel // (2**i),
|
308 |
+
h.upsample_initial_channel // (2 ** (i + 1)),
|
309 |
+
k,
|
310 |
+
u,
|
311 |
+
padding=(k - u) // 2,
|
312 |
+
)
|
313 |
+
)
|
314 |
+
]
|
315 |
+
)
|
316 |
+
)
|
317 |
|
318 |
+
# Residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
319 |
self.resblocks = nn.ModuleList()
|
320 |
for i in range(len(self.ups)):
|
321 |
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
322 |
+
for j, (k, d) in enumerate(
|
323 |
+
zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)
|
324 |
+
):
|
325 |
+
self.resblocks.append(
|
326 |
+
resblock_class(h, ch, k, d, activation=h.activation)
|
327 |
+
)
|
|
|
|
|
|
|
|
|
328 |
|
329 |
+
# Post-conv
|
330 |
+
activation_post = (
|
331 |
+
activations.Snake(ch, alpha_logscale=h.snake_logscale)
|
332 |
+
if h.activation == "snake"
|
333 |
+
else (
|
334 |
+
activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
|
335 |
+
if h.activation == "snakebeta"
|
336 |
+
else None
|
337 |
+
)
|
338 |
+
)
|
339 |
+
if activation_post is None:
|
340 |
+
raise NotImplementedError(
|
341 |
+
"activation incorrectly specified. check the config file and look for 'activation'."
|
342 |
+
)
|
343 |
+
|
344 |
+
self.activation_post = Activation1d(activation=activation_post)
|
345 |
+
|
346 |
+
# Whether to use bias for the final conv_post. Default to True for backward compatibility
|
347 |
self.use_bias_at_final = h.get("use_bias_at_final", True)
|
348 |
+
self.conv_post = weight_norm(
|
349 |
+
Conv1d(ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final)
|
350 |
+
)
|
351 |
|
352 |
+
# Weight initialization
|
353 |
for i in range(len(self.ups)):
|
354 |
self.ups[i].apply(init_weights)
|
355 |
self.conv_post.apply(init_weights)
|
356 |
+
|
357 |
+
# Final tanh activation. Defaults to True for backward compatibility
|
358 |
self.use_tanh_at_final = h.get("use_tanh_at_final", True)
|
359 |
|
360 |
def forward(self, x):
|
361 |
+
# Pre-conv
|
362 |
x = self.conv_pre(x)
|
363 |
|
364 |
for i in range(self.num_upsamples):
|
365 |
+
# Upsampling
|
366 |
for i_up in range(len(self.ups[i])):
|
367 |
x = self.ups[i][i_up](x)
|
368 |
# AMP blocks
|
|
|
374 |
xs += self.resblocks[i * self.num_kernels + j](x)
|
375 |
x = xs / self.num_kernels
|
376 |
|
377 |
+
# Post-conv
|
378 |
x = self.activation_post(x)
|
379 |
x = self.conv_post(x)
|
380 |
+
# Final tanh activation
|
381 |
if self.use_tanh_at_final:
|
382 |
x = torch.tanh(x)
|
383 |
else:
|
384 |
+
x = torch.clamp(x, min=-1.0, max=1.0) # Bound the output to [-1, 1]
|
385 |
|
386 |
return x
|
387 |
|
388 |
def remove_weight_norm(self):
|
389 |
try:
|
390 |
+
print("Removing weight norm...")
|
391 |
for l in self.ups:
|
392 |
for l_i in l:
|
393 |
remove_weight_norm(l_i)
|
|
|
396 |
remove_weight_norm(self.conv_pre)
|
397 |
remove_weight_norm(self.conv_post)
|
398 |
except ValueError:
|
399 |
+
print("[INFO] Model already removed weight norm. Skipping!")
|
400 |
pass
|
401 |
|
402 |
+
# Additional methods for huggingface_hub support
|
|
|
|
|
403 |
def _save_pretrained(self, save_directory: Path) -> None:
|
404 |
"""Save weights and config.json from a Pytorch model to a local directory."""
|
405 |
|
406 |
+
model_path = save_directory / "bigvgan_generator.pt"
|
407 |
+
torch.save({"generator": self.state_dict()}, model_path)
|
|
|
|
|
|
|
408 |
|
409 |
+
config_path = save_directory / "config.json"
|
410 |
+
with open(config_path, "w") as config_file:
|
411 |
json.dump(self.h, config_file, indent=4)
|
412 |
|
413 |
@classmethod
|
|
|
422 |
resume_download: bool,
|
423 |
local_files_only: bool,
|
424 |
token: Union[str, bool, None],
|
425 |
+
map_location: str = "cpu", # Additional argument
|
426 |
+
strict: bool = False, # Additional argument
|
427 |
use_cuda_kernel: bool = False,
|
428 |
**model_kwargs,
|
429 |
):
|
430 |
"""Load Pytorch pretrained weights and return the loaded model."""
|
431 |
|
432 |
+
# Download and load hyperparameters (h) used by BigVGAN
|
|
|
|
|
433 |
if os.path.isdir(model_id):
|
434 |
print("Loading config.json from local directory")
|
435 |
+
config_file = os.path.join(model_id, "config.json")
|
436 |
else:
|
437 |
config_file = hf_hub_download(
|
438 |
repo_id=model_id,
|
439 |
+
filename="config.json",
|
440 |
revision=revision,
|
441 |
cache_dir=cache_dir,
|
442 |
force_download=force_download,
|
|
|
447 |
)
|
448 |
h = load_hparams_from_json(config_file)
|
449 |
|
|
|
450 |
# instantiate BigVGAN using h
|
|
|
451 |
if use_cuda_kernel:
|
452 |
+
print(
|
453 |
+
f"[WARNING] You have specified use_cuda_kernel=True during BigVGAN.from_pretrained(). Only inference is supported (training is not implemented)!"
|
454 |
+
)
|
455 |
+
print(
|
456 |
+
f"[WARNING] You need nvcc and ninja installed in your system that matches your PyTorch build is using to build the kernel. If not, the model will fail to initialize or generate incorrect waveform!"
|
457 |
+
)
|
458 |
+
print(
|
459 |
+
f"[WARNING] For detail, see the official GitHub repository: https://github.com/NVIDIA/BigVGAN?tab=readme-ov-file#using-custom-cuda-kernel-for-synthesis"
|
460 |
+
)
|
461 |
model = cls(h, use_cuda_kernel=use_cuda_kernel)
|
462 |
|
463 |
+
# Download and load pretrained generator weight
|
|
|
|
|
464 |
if os.path.isdir(model_id):
|
465 |
print("Loading weights from local directory")
|
466 |
+
model_file = os.path.join(model_id, "bigvgan_generator.pt")
|
467 |
else:
|
468 |
print(f"Loading weights from {model_id}")
|
469 |
model_file = hf_hub_download(
|
470 |
repo_id=model_id,
|
471 |
+
filename="bigvgan_generator.pt",
|
472 |
revision=revision,
|
473 |
cache_dir=cache_dir,
|
474 |
force_download=force_download,
|
|
|
476 |
resume_download=resume_download,
|
477 |
token=token,
|
478 |
local_files_only=local_files_only,
|
479 |
+
)
|
480 |
+
|
481 |
checkpoint_dict = torch.load(model_file, map_location=map_location)
|
482 |
|
483 |
try:
|
484 |
+
model.load_state_dict(checkpoint_dict["generator"])
|
485 |
except RuntimeError:
|
486 |
+
print(
|
487 |
+
f"[INFO] the pretrained checkpoint does not contain weight norm. Loading the checkpoint after removing weight norm!"
|
488 |
+
)
|
489 |
model.remove_weight_norm()
|
490 |
+
model.load_state_dict(checkpoint_dict["generator"])
|
491 |
|
492 |
+
return model
|
meldataset.py
CHANGED
@@ -1,66 +1,354 @@
|
|
1 |
-
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
# Licensed under the MIT license.
|
3 |
|
4 |
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
5 |
# LICENSE is in incl_licenses directory.
|
6 |
|
|
|
|
|
|
|
7 |
import torch
|
8 |
import torch.utils.data
|
9 |
import numpy as np
|
|
|
10 |
from scipy.io.wavfile import read
|
11 |
from librosa.filters import mel as librosa_mel_fn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
MAX_WAV_VALUE = 32767.0 # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases)
|
14 |
|
15 |
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
16 |
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
17 |
|
|
|
18 |
def dynamic_range_decompression(x, C=1):
|
19 |
return np.exp(x) / C
|
20 |
|
|
|
21 |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
22 |
return torch.log(torch.clamp(x, min=clip_val) * C)
|
23 |
|
|
|
24 |
def dynamic_range_decompression_torch(x, C=1):
|
25 |
return torch.exp(x) / C
|
26 |
|
|
|
27 |
def spectral_normalize_torch(magnitudes):
|
28 |
-
|
29 |
-
|
30 |
|
31 |
def spectral_de_normalize_torch(magnitudes):
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
-
mel_basis = {}
|
36 |
-
hann_window = {}
|
37 |
|
38 |
-
def mel_spectrogram(
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
|
57 |
-
spec = torch.view_as_real(spec)
|
58 |
-
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
return spec
|
64 |
|
65 |
def get_mel_spectrogram(wav, h):
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
# Licensed under the MIT license.
|
3 |
|
4 |
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
5 |
# LICENSE is in incl_licenses directory.
|
6 |
|
7 |
+
import math
|
8 |
+
import os
|
9 |
+
import random
|
10 |
import torch
|
11 |
import torch.utils.data
|
12 |
import numpy as np
|
13 |
+
from librosa.util import normalize
|
14 |
from scipy.io.wavfile import read
|
15 |
from librosa.filters import mel as librosa_mel_fn
|
16 |
+
import pathlib
|
17 |
+
from tqdm import tqdm
|
18 |
+
|
19 |
+
MAX_WAV_VALUE = 32767.0 # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases)
|
20 |
+
|
21 |
+
|
22 |
+
def load_wav(full_path, sr_target):
|
23 |
+
sampling_rate, data = read(full_path)
|
24 |
+
if sampling_rate != sr_target:
|
25 |
+
raise RuntimeError(
|
26 |
+
f"Sampling rate of the file {full_path} is {sampling_rate} Hz, but the model requires {sr_target} Hz"
|
27 |
+
)
|
28 |
+
return data, sampling_rate
|
29 |
|
|
|
30 |
|
31 |
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
32 |
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
33 |
|
34 |
+
|
35 |
def dynamic_range_decompression(x, C=1):
|
36 |
return np.exp(x) / C
|
37 |
|
38 |
+
|
39 |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
40 |
return torch.log(torch.clamp(x, min=clip_val) * C)
|
41 |
|
42 |
+
|
43 |
def dynamic_range_decompression_torch(x, C=1):
|
44 |
return torch.exp(x) / C
|
45 |
|
46 |
+
|
47 |
def spectral_normalize_torch(magnitudes):
|
48 |
+
return dynamic_range_compression_torch(magnitudes)
|
49 |
+
|
50 |
|
51 |
def spectral_de_normalize_torch(magnitudes):
|
52 |
+
return dynamic_range_decompression_torch(magnitudes)
|
53 |
+
|
54 |
+
|
55 |
+
mel_basis_cache = {}
|
56 |
+
hann_window_cache = {}
|
57 |
|
|
|
|
|
58 |
|
59 |
+
def mel_spectrogram(
|
60 |
+
y: torch.Tensor,
|
61 |
+
n_fft: int,
|
62 |
+
num_mels: int,
|
63 |
+
sampling_rate: int,
|
64 |
+
hop_size: int,
|
65 |
+
win_size: int,
|
66 |
+
fmin: int,
|
67 |
+
fmax: int = None,
|
68 |
+
center: bool = False,
|
69 |
+
) -> torch.Tensor:
|
70 |
+
"""
|
71 |
+
Calculate the mel spectrogram of an input signal.
|
72 |
+
This function uses slaney norm for the librosa mel filterbank (using librosa.filters.mel) and uses Hann window for STFT (using torch.stft).
|
73 |
|
74 |
+
Args:
|
75 |
+
y (torch.Tensor): Input signal.
|
76 |
+
n_fft (int): FFT size.
|
77 |
+
num_mels (int): Number of mel bins.
|
78 |
+
sampling_rate (int): Sampling rate of the input signal.
|
79 |
+
hop_size (int): Hop size for STFT.
|
80 |
+
win_size (int): Window size for STFT.
|
81 |
+
fmin (int): Minimum frequency for mel filterbank.
|
82 |
+
fmax (int): Maximum frequency for mel filterbank. If None, defaults to half the sampling rate (fmax = sr / 2.0) inside librosa_mel_fn
|
83 |
+
center (bool): Whether to pad the input to center the frames. Default is False.
|
84 |
|
85 |
+
Returns:
|
86 |
+
torch.Tensor: Mel spectrogram.
|
87 |
+
"""
|
88 |
+
if torch.min(y) < -1.0:
|
89 |
+
print(f"[WARNING] Min value of input waveform signal is {torch.min(y)}")
|
90 |
+
if torch.max(y) > 1.0:
|
91 |
+
print(f"[WARNING] Max value of input waveform signal is {torch.max(y)}")
|
92 |
|
93 |
+
device = y.device
|
94 |
+
key = f"{n_fft}_{num_mels}_{sampling_rate}_{hop_size}_{win_size}_{fmin}_{fmax}_{device}"
|
|
|
|
|
|
|
95 |
|
96 |
+
if key not in mel_basis_cache:
|
97 |
+
mel = librosa_mel_fn(
|
98 |
+
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
99 |
+
)
|
100 |
+
mel_basis_cache[key] = torch.from_numpy(mel).float().to(device)
|
101 |
+
hann_window_cache[key] = torch.hann_window(win_size).to(device)
|
102 |
+
|
103 |
+
mel_basis = mel_basis_cache[key]
|
104 |
+
hann_window = hann_window_cache[key]
|
105 |
+
|
106 |
+
padding = (n_fft - hop_size) // 2
|
107 |
+
y = torch.nn.functional.pad(
|
108 |
+
y.unsqueeze(1), (padding, padding), mode="reflect"
|
109 |
+
).squeeze(1)
|
110 |
+
|
111 |
+
spec = torch.stft(
|
112 |
+
y,
|
113 |
+
n_fft,
|
114 |
+
hop_length=hop_size,
|
115 |
+
win_length=win_size,
|
116 |
+
window=hann_window,
|
117 |
+
center=center,
|
118 |
+
pad_mode="reflect",
|
119 |
+
normalized=False,
|
120 |
+
onesided=True,
|
121 |
+
return_complex=True,
|
122 |
+
)
|
123 |
+
spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9)
|
124 |
+
|
125 |
+
mel_spec = torch.matmul(mel_basis, spec)
|
126 |
+
mel_spec = spectral_normalize_torch(mel_spec)
|
127 |
+
|
128 |
+
return mel_spec
|
129 |
|
|
|
130 |
|
131 |
def get_mel_spectrogram(wav, h):
|
132 |
+
"""
|
133 |
+
Generate mel spectrogram from a waveform using given hyperparameters.
|
134 |
+
|
135 |
+
Args:
|
136 |
+
wav (torch.Tensor): Input waveform.
|
137 |
+
h: Hyperparameters object with attributes n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax.
|
138 |
+
|
139 |
+
Returns:
|
140 |
+
torch.Tensor: Mel spectrogram.
|
141 |
+
"""
|
142 |
+
return mel_spectrogram(
|
143 |
+
wav,
|
144 |
+
h.n_fft,
|
145 |
+
h.num_mels,
|
146 |
+
h.sampling_rate,
|
147 |
+
h.hop_size,
|
148 |
+
h.win_size,
|
149 |
+
h.fmin,
|
150 |
+
h.fmax,
|
151 |
+
)
|
152 |
+
|
153 |
+
|
154 |
+
def get_dataset_filelist(a):
|
155 |
+
training_files = []
|
156 |
+
validation_files = []
|
157 |
+
list_unseen_validation_files = []
|
158 |
+
|
159 |
+
with open(a.input_training_file, "r", encoding="utf-8") as fi:
|
160 |
+
training_files = [
|
161 |
+
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav")
|
162 |
+
for x in fi.read().split("\n")
|
163 |
+
if len(x) > 0
|
164 |
+
]
|
165 |
+
print(f"first training file: {training_files[0]}")
|
166 |
+
|
167 |
+
with open(a.input_validation_file, "r", encoding="utf-8") as fi:
|
168 |
+
validation_files = [
|
169 |
+
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav")
|
170 |
+
for x in fi.read().split("\n")
|
171 |
+
if len(x) > 0
|
172 |
+
]
|
173 |
+
print(f"first validation file: {validation_files[0]}")
|
174 |
+
|
175 |
+
for i in range(len(a.list_input_unseen_validation_file)):
|
176 |
+
with open(a.list_input_unseen_validation_file[i], "r", encoding="utf-8") as fi:
|
177 |
+
unseen_validation_files = [
|
178 |
+
os.path.join(a.list_input_unseen_wavs_dir[i], x.split("|")[0] + ".wav")
|
179 |
+
for x in fi.read().split("\n")
|
180 |
+
if len(x) > 0
|
181 |
+
]
|
182 |
+
print(
|
183 |
+
f"first unseen {i}th validation fileset: {unseen_validation_files[0]}"
|
184 |
+
)
|
185 |
+
list_unseen_validation_files.append(unseen_validation_files)
|
186 |
+
|
187 |
+
return training_files, validation_files, list_unseen_validation_files
|
188 |
+
|
189 |
+
|
190 |
+
class MelDataset(torch.utils.data.Dataset):
|
191 |
+
def __init__(
|
192 |
+
self,
|
193 |
+
training_files,
|
194 |
+
hparams,
|
195 |
+
segment_size,
|
196 |
+
n_fft,
|
197 |
+
num_mels,
|
198 |
+
hop_size,
|
199 |
+
win_size,
|
200 |
+
sampling_rate,
|
201 |
+
fmin,
|
202 |
+
fmax,
|
203 |
+
split=True,
|
204 |
+
shuffle=True,
|
205 |
+
n_cache_reuse=1,
|
206 |
+
device=None,
|
207 |
+
fmax_loss=None,
|
208 |
+
fine_tuning=False,
|
209 |
+
base_mels_path=None,
|
210 |
+
is_seen=True,
|
211 |
+
):
|
212 |
+
self.audio_files = training_files
|
213 |
+
random.seed(1234)
|
214 |
+
if shuffle:
|
215 |
+
random.shuffle(self.audio_files)
|
216 |
+
self.hparams = hparams
|
217 |
+
self.is_seen = is_seen
|
218 |
+
if self.is_seen:
|
219 |
+
self.name = pathlib.Path(self.audio_files[0]).parts[0]
|
220 |
+
else:
|
221 |
+
self.name = "-".join(pathlib.Path(self.audio_files[0]).parts[:2]).strip("/")
|
222 |
+
|
223 |
+
self.segment_size = segment_size
|
224 |
+
self.sampling_rate = sampling_rate
|
225 |
+
self.split = split
|
226 |
+
self.n_fft = n_fft
|
227 |
+
self.num_mels = num_mels
|
228 |
+
self.hop_size = hop_size
|
229 |
+
self.win_size = win_size
|
230 |
+
self.fmin = fmin
|
231 |
+
self.fmax = fmax
|
232 |
+
self.fmax_loss = fmax_loss
|
233 |
+
self.cached_wav = None
|
234 |
+
self.n_cache_reuse = n_cache_reuse
|
235 |
+
self._cache_ref_count = 0
|
236 |
+
self.device = device
|
237 |
+
self.fine_tuning = fine_tuning
|
238 |
+
self.base_mels_path = base_mels_path
|
239 |
+
|
240 |
+
print("[INFO] checking dataset integrity...")
|
241 |
+
for i in tqdm(range(len(self.audio_files))):
|
242 |
+
assert os.path.exists(
|
243 |
+
self.audio_files[i]
|
244 |
+
), f"{self.audio_files[i]} not found"
|
245 |
+
|
246 |
+
def __getitem__(self, index):
|
247 |
+
filename = self.audio_files[index]
|
248 |
+
if self._cache_ref_count == 0:
|
249 |
+
audio, sampling_rate = load_wav(filename, self.sampling_rate)
|
250 |
+
audio = audio / MAX_WAV_VALUE
|
251 |
+
if not self.fine_tuning:
|
252 |
+
audio = normalize(audio) * 0.95
|
253 |
+
self.cached_wav = audio
|
254 |
+
if sampling_rate != self.sampling_rate:
|
255 |
+
raise ValueError(
|
256 |
+
f"{sampling_rate} SR doesn't match target {self.sampling_rate} SR"
|
257 |
+
)
|
258 |
+
self._cache_ref_count = self.n_cache_reuse
|
259 |
+
else:
|
260 |
+
audio = self.cached_wav
|
261 |
+
self._cache_ref_count -= 1
|
262 |
+
|
263 |
+
audio = torch.FloatTensor(audio)
|
264 |
+
audio = audio.unsqueeze(0)
|
265 |
+
|
266 |
+
if not self.fine_tuning:
|
267 |
+
if self.split:
|
268 |
+
if audio.size(1) >= self.segment_size:
|
269 |
+
max_audio_start = audio.size(1) - self.segment_size
|
270 |
+
audio_start = random.randint(0, max_audio_start)
|
271 |
+
audio = audio[:, audio_start : audio_start + self.segment_size]
|
272 |
+
else:
|
273 |
+
audio = torch.nn.functional.pad(
|
274 |
+
audio, (0, self.segment_size - audio.size(1)), "constant"
|
275 |
+
)
|
276 |
+
|
277 |
+
mel = mel_spectrogram(
|
278 |
+
audio,
|
279 |
+
self.n_fft,
|
280 |
+
self.num_mels,
|
281 |
+
self.sampling_rate,
|
282 |
+
self.hop_size,
|
283 |
+
self.win_size,
|
284 |
+
self.fmin,
|
285 |
+
self.fmax,
|
286 |
+
center=False,
|
287 |
+
)
|
288 |
+
else: # Validation step
|
289 |
+
# Match audio length to self.hop_size * n for evaluation
|
290 |
+
if (audio.size(1) % self.hop_size) != 0:
|
291 |
+
audio = audio[:, : -(audio.size(1) % self.hop_size)]
|
292 |
+
mel = mel_spectrogram(
|
293 |
+
audio,
|
294 |
+
self.n_fft,
|
295 |
+
self.num_mels,
|
296 |
+
self.sampling_rate,
|
297 |
+
self.hop_size,
|
298 |
+
self.win_size,
|
299 |
+
self.fmin,
|
300 |
+
self.fmax,
|
301 |
+
center=False,
|
302 |
+
)
|
303 |
+
assert (
|
304 |
+
audio.shape[1] == mel.shape[2] * self.hop_size
|
305 |
+
), f"audio shape {audio.shape} mel shape {mel.shape}"
|
306 |
+
|
307 |
+
else:
|
308 |
+
mel = np.load(
|
309 |
+
os.path.join(
|
310 |
+
self.base_mels_path,
|
311 |
+
os.path.splitext(os.path.split(filename)[-1])[0] + ".npy",
|
312 |
+
)
|
313 |
+
)
|
314 |
+
mel = torch.from_numpy(mel)
|
315 |
+
|
316 |
+
if len(mel.shape) < 3:
|
317 |
+
mel = mel.unsqueeze(0)
|
318 |
+
|
319 |
+
if self.split:
|
320 |
+
frames_per_seg = math.ceil(self.segment_size / self.hop_size)
|
321 |
+
|
322 |
+
if audio.size(1) >= self.segment_size:
|
323 |
+
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1)
|
324 |
+
mel = mel[:, :, mel_start : mel_start + frames_per_seg]
|
325 |
+
audio = audio[
|
326 |
+
:,
|
327 |
+
mel_start
|
328 |
+
* self.hop_size : (mel_start + frames_per_seg)
|
329 |
+
* self.hop_size,
|
330 |
+
]
|
331 |
+
else:
|
332 |
+
mel = torch.nn.functional.pad(
|
333 |
+
mel, (0, frames_per_seg - mel.size(2)), "constant"
|
334 |
+
)
|
335 |
+
audio = torch.nn.functional.pad(
|
336 |
+
audio, (0, self.segment_size - audio.size(1)), "constant"
|
337 |
+
)
|
338 |
+
|
339 |
+
mel_loss = mel_spectrogram(
|
340 |
+
audio,
|
341 |
+
self.n_fft,
|
342 |
+
self.num_mels,
|
343 |
+
self.sampling_rate,
|
344 |
+
self.hop_size,
|
345 |
+
self.win_size,
|
346 |
+
self.fmin,
|
347 |
+
self.fmax_loss,
|
348 |
+
center=False,
|
349 |
+
)
|
350 |
+
|
351 |
+
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze())
|
352 |
+
|
353 |
+
def __len__(self):
|
354 |
+
return len(self.audio_files)
|
nv-modelcard++/.gitkeep
ADDED
File without changes
|
nv-modelcard++/bias.md
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
Field |
|
2 |
-
|
3 |
-
Participation considerations from adversely impacted groups protected classes in model design and testing: | None
|
4 |
-
Measures taken to mitigate against unwanted bias:
|
|
|
1 |
+
| Field | Response |
|
2 |
+
| :--------------------------------------------------------------------------------------------------------- | :--------------------------------------------------- |
|
3 |
+
| Participation considerations from adversely impacted groups protected classes in model design and testing: | None |
|
4 |
+
| Measures taken to mitigate against unwanted bias: | No measures taken to mitigate against unwanted bias. |
|
nv-modelcard++/explainability.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
-
Field
|
2 |
-
|
3 |
-
Intended Application & Domain:
|
4 |
-
Model Type:
|
5 |
-
Intended Users:
|
6 |
-
Output:
|
7 |
-
Describe how the model works:
|
8 |
-
Name the adversely impacted groups this has been tested to deliver comparable outcomes regardless of: | Not Applicable
|
9 |
-
Technical Limitations:
|
10 |
-
Verified to have met prescribed NVIDIA quality standards: |
|
11 |
-
Performance Metrics:
|
12 |
-
Potential Known Risks:
|
13 |
-
Licensing:
|
|
|
1 |
+
| Field | Response |
|
2 |
+
| :---------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
3 |
+
| Intended Application & Domain: | Generating waveform from mel spectrogram. |
|
4 |
+
| Model Type: | Convolutional Neural Network (CNN) |
|
5 |
+
| Intended Users: | This model is intended for developers to synthesize and generate waveforms from the AI-generated mel spectrograms. |
|
6 |
+
| Output: | Audio Waveform |
|
7 |
+
| Describe how the model works: | Model generates audio waveform corresponding to the input mel spectrogram. |
|
8 |
+
| Name the adversely impacted groups this has been tested to deliver comparable outcomes regardless of: | Not Applicable |
|
9 |
+
| Technical Limitations: | This may not perform well on synthetically-generated mel spectrograms that deviate significantly from the profile of mel spectrograms on which this was trained. |
|
10 |
+
| Verified to have met prescribed NVIDIA quality standards: | Yes |
|
11 |
+
| Performance Metrics: | Perceptual Evaluation of Speech Quality (PESQ), Virtual Speech Quality Objective Listener (VISQOL), Multi-resolution STFT (MRSTFT), Mel cepstral distortion (MCD), Periodicity RMSE, Voice/Unvoiced F1 Score (V/UV F1) |
|
12 |
+
| Potential Known Risks: | This model may generate low-quality or distorted soundwaves. |
|
13 |
+
| Licensing: | https://github.com/NVIDIA/BigVGAN/blob/main/LICENSE |
|
nv-modelcard++/overview.md
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
# Model Overview
|
2 |
|
3 |
## Description:
|
|
|
4 |
BigVGAN is a generative AI model specialized in synthesizing audio waveforms using Mel spectrogram as inputs.
|
5 |
|
6 |
<center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800"></center>
|
7 |
|
8 |
-
BigVGAN is a fully convolutional architecture with several upsampling blocks using transposed convolution followed by multiple residual dilated convolution layers.
|
9 |
|
10 |
BigVGAN consists of a novel module, called anti-aliased multi-periodicity composition (AMP), which is specifically designed for generating waveforms. AMP is specialized in synthesizing high-frequency and periodic soundwaves drawing inspiration from audio signal processing principles.
|
11 |
|
@@ -13,102 +14,113 @@ It applies a periodic activation function, called Snake, which provides an induc
|
|
13 |
|
14 |
This model is ready for commercial use.<br>
|
15 |
|
16 |
-
|
17 |
## References(s):
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
21 |
|
22 |
## Model Architecture:
|
|
|
23 |
**Architecture Type:** Convolution Neural Network (CNN) <br>
|
24 |
**Network Architecture:** You can see the details of this model on this link: https://github.com/NVIDIA/BigVGAN and the related paper can be found here: https://arxiv.org/abs/2206.04658<br>
|
25 |
**Model Version:** 2.0 <br>
|
26 |
|
27 |
## Input:
|
|
|
28 |
**Input Type:** Audio <br>
|
29 |
**Input Format:** Mel Spectrogram <br>
|
30 |
**Input Parameters:** None <br>
|
31 |
-
**Other Properties Related to Input:** The input mel spectrogram has shape `[batch, channels, frames]`, where `channels` refers to the number of mel bands defined by the model and `frames` refers to the temporal length. The model supports arbitrary long `frames` that fits into the GPU memory.
|
32 |
|
33 |
## Output:
|
|
|
34 |
**Input Type:** Audio <br>
|
35 |
**Output Format:** Audio Waveform <br>
|
36 |
**Output Parameters:** None <br>
|
37 |
**Other Properties Related to Output:** The output audio waveform has shape `[batch, 1, time]`, where `1` refers to the mono audio channels and `time` refers to the temporal length. `time` is defined as a fixed integer multiple of input `frames`, which is an upsampling ratio of the model (`time = upsampling ratio * frames`). The output audio waveform consitutes float values with a range of `[-1, 1]`.
|
38 |
|
39 |
## Software Integration:
|
|
|
40 |
**Runtime Engine(s):** PyTorch
|
41 |
|
42 |
**Supported Hardware Microarchitecture Compatibility:** NVIDIA Ampere, NVIDIA Hopper, NVIDIA Lovelace, NVIDIA Turing, NVIDIA Volta <br>
|
43 |
|
44 |
-
|
45 |
## Preferred/Supported Operating System(s):
|
46 |
-
Linux
|
47 |
|
|
|
48 |
|
49 |
## Model Version(s):
|
|
|
50 |
v2.0
|
51 |
|
52 |
## Training, Testing, and Evaluation Datasets:
|
53 |
|
54 |
### Training Dataset:
|
|
|
55 |
The dataset contains diverse audio types, including speech in multiple languages, environmental sounds, and instruments.
|
56 |
|
57 |
**Links:**
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
97 |
|
98 |
### Evaluating Dataset:
|
99 |
|
100 |
Properties: The audio generation quality of BigVGAN is evaluated using `dev` splits of the [LibriTTS dataset](https://www.openslr.org/60/) and [Hi-Fi TTS dataset](https://www.openslr.org/109/). The datasets include speech in English language with equal balance of genders.
|
101 |
|
102 |
-
|
103 |
-
|
|
|
104 |
|
105 |
-
|
106 |
-
* Automated <br>
|
107 |
|
|
|
108 |
|
109 |
## Inference:
|
|
|
110 |
**Engine:** PyTorch <br>
|
111 |
**Test Hardware:** NVIDIA A100 GPU <br>
|
112 |
|
113 |
## Ethical Considerations:
|
114 |
-
|
|
|
|
1 |
# Model Overview
|
2 |
|
3 |
## Description:
|
4 |
+
|
5 |
BigVGAN is a generative AI model specialized in synthesizing audio waveforms using Mel spectrogram as inputs.
|
6 |
|
7 |
<center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800"></center>
|
8 |
|
9 |
+
BigVGAN is a fully convolutional architecture with several upsampling blocks using transposed convolution followed by multiple residual dilated convolution layers.
|
10 |
|
11 |
BigVGAN consists of a novel module, called anti-aliased multi-periodicity composition (AMP), which is specifically designed for generating waveforms. AMP is specialized in synthesizing high-frequency and periodic soundwaves drawing inspiration from audio signal processing principles.
|
12 |
|
|
|
14 |
|
15 |
This model is ready for commercial use.<br>
|
16 |
|
|
|
17 |
## References(s):
|
18 |
+
|
19 |
+
- [BigVGAN: A Universal Neural Vocoder with Large-Scale Training](https://arxiv.org/abs/2206.04658) <br>
|
20 |
+
- [Project Page](https://research.nvidia.com/labs/adlr/projects/bigvgan/) <br>
|
21 |
+
- [Audio Demo](https://bigvgan-demo.github.io/) <br>
|
22 |
|
23 |
## Model Architecture:
|
24 |
+
|
25 |
**Architecture Type:** Convolution Neural Network (CNN) <br>
|
26 |
**Network Architecture:** You can see the details of this model on this link: https://github.com/NVIDIA/BigVGAN and the related paper can be found here: https://arxiv.org/abs/2206.04658<br>
|
27 |
**Model Version:** 2.0 <br>
|
28 |
|
29 |
## Input:
|
30 |
+
|
31 |
**Input Type:** Audio <br>
|
32 |
**Input Format:** Mel Spectrogram <br>
|
33 |
**Input Parameters:** None <br>
|
34 |
+
**Other Properties Related to Input:** The input mel spectrogram has shape `[batch, channels, frames]`, where `channels` refers to the number of mel bands defined by the model and `frames` refers to the temporal length. The model supports arbitrary long `frames` that fits into the GPU memory.
|
35 |
|
36 |
## Output:
|
37 |
+
|
38 |
**Input Type:** Audio <br>
|
39 |
**Output Format:** Audio Waveform <br>
|
40 |
**Output Parameters:** None <br>
|
41 |
**Other Properties Related to Output:** The output audio waveform has shape `[batch, 1, time]`, where `1` refers to the mono audio channels and `time` refers to the temporal length. `time` is defined as a fixed integer multiple of input `frames`, which is an upsampling ratio of the model (`time = upsampling ratio * frames`). The output audio waveform consitutes float values with a range of `[-1, 1]`.
|
42 |
|
43 |
## Software Integration:
|
44 |
+
|
45 |
**Runtime Engine(s):** PyTorch
|
46 |
|
47 |
**Supported Hardware Microarchitecture Compatibility:** NVIDIA Ampere, NVIDIA Hopper, NVIDIA Lovelace, NVIDIA Turing, NVIDIA Volta <br>
|
48 |
|
|
|
49 |
## Preferred/Supported Operating System(s):
|
|
|
50 |
|
51 |
+
Linux
|
52 |
|
53 |
## Model Version(s):
|
54 |
+
|
55 |
v2.0
|
56 |
|
57 |
## Training, Testing, and Evaluation Datasets:
|
58 |
|
59 |
### Training Dataset:
|
60 |
+
|
61 |
The dataset contains diverse audio types, including speech in multiple languages, environmental sounds, and instruments.
|
62 |
|
63 |
**Links:**
|
64 |
+
|
65 |
+
- [AAM: Artificial Audio Multitracks Dataset](https://zenodo.org/records/5794629)
|
66 |
+
- [AudioCaps](https://audiocaps.github.io/)
|
67 |
+
- [AudioSet](https://research.google.com/audioset/index.html)
|
68 |
+
- [common-accent](https://huggingface.co/datasets/DTU54DL/common-accent)
|
69 |
+
- [Crowd Sourced Emotional Multimodal Actors Dataset (CREMA-D)](https://ieeexplore.ieee.org/document/6849440)
|
70 |
+
- [DCASE2017 Challenge, Task 4: Large-scale weakly supervised sound event detection for smart cars](https://dcase.community/challenge2017/task-large-scale-sound-event-detection)
|
71 |
+
- [FSDnoisy18k](https://zenodo.org/records/2529934)
|
72 |
+
- [Free Universal Sound Separation Dataset](https://zenodo.org/records/3694384)
|
73 |
+
- [Greatest Hits dataset](https://andrewowens.com/vis/)
|
74 |
+
- [GTZAN](https://ieeexplore.ieee.org/document/1021072)
|
75 |
+
- [JL corpus](https://www.kaggle.com/datasets/tli725/jl-corpus)
|
76 |
+
- [Medley-solos-DB: a cross-collection dataset for musical instrument recognition](https://zenodo.org/records/3464194)
|
77 |
+
- [MUSAN: A Music, Speech, and Noise Corpus](https://www.openslr.org/17/)
|
78 |
+
- [MusicBench](https://huggingface.co/datasets/amaai-lab/MusicBench)
|
79 |
+
- [MusicCaps](https://www.kaggle.com/datasets/googleai/musiccaps)
|
80 |
+
- [MusicNet](https://www.kaggle.com/datasets/imsparsh/musicnet-dataset)
|
81 |
+
- [NSynth](https://magenta.tensorflow.org/datasets/nsynth)
|
82 |
+
- [OnAir-Music-Dataset](https://github.com/sevagh/OnAir-Music-Dataset)
|
83 |
+
- [Audio Piano Triads Dataset](https://zenodo.org/records/4740877)
|
84 |
+
- [Pitch Audio Dataset (Surge synthesizer)](https://zenodo.org/records/4677097)
|
85 |
+
- [SONYC Urban Sound Tagging (SONYC-UST): a multilabel dataset from an urban acoustic sensor network](https://zenodo.org/records/3966543)
|
86 |
+
- [VocalSound: A Dataset for Improving Human Vocal Sounds Recognition](https://arxiv.org/abs/2205.03433)
|
87 |
+
- [WavText5K](https://github.com/microsoft/WavText5K)
|
88 |
+
- [CSS10: A Collection of Single Speaker Speech Datasets for 10 Languages](https://github.com/Kyubyong/css10)
|
89 |
+
- [Hi-Fi Multi-Speaker English TTS Dataset (Hi-Fi TTS)](https://www.openslr.org/109/)
|
90 |
+
- [IIIT-H Indic Speech Databases](http://festvox.org/databases/iiit_voices/)
|
91 |
+
- [Libri-Light: A Benchmark for ASR with Limited or No Supervision](https://arxiv.org/abs/1912.07875)
|
92 |
+
- [LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech](https://www.openslr.org/60)
|
93 |
+
- [LibriTTS-R: A Restored Multi-Speaker Text-to-Speech Corpus](https://www.openslr.org/141/)
|
94 |
+
- [The SIWIS French Speech Synthesis Database](https://datashare.ed.ac.uk/handle/10283/2353)
|
95 |
+
- [Crowdsourced high-quality Colombian Spanish speech data set](https://openslr.org/72/)
|
96 |
+
- [TTS-Portuguese Corpus](https://github.com/Edresson/TTS-Portuguese-Corpus)
|
97 |
+
- [CSTR VCTK Corpus: English Multi-speaker Corpus for CSTR Voice Cloning Toolkit](https://datashare.ed.ac.uk/handle/10283/3443)
|
98 |
+
|
99 |
+
\*\* Data Collection Method by dataset <br>
|
100 |
+
|
101 |
+
- Human <br>
|
102 |
+
|
103 |
+
\*\* Labeling Method by dataset (for those with labels) <br>
|
104 |
+
|
105 |
+
- Hybrid: Automated, Human, Unknown <br>
|
106 |
|
107 |
### Evaluating Dataset:
|
108 |
|
109 |
Properties: The audio generation quality of BigVGAN is evaluated using `dev` splits of the [LibriTTS dataset](https://www.openslr.org/60/) and [Hi-Fi TTS dataset](https://www.openslr.org/109/). The datasets include speech in English language with equal balance of genders.
|
110 |
|
111 |
+
\*\* Data Collection Method by dataset <br>
|
112 |
+
|
113 |
+
- Human <br>
|
114 |
|
115 |
+
\*\* Labeling Method by dataset <br>
|
|
|
116 |
|
117 |
+
- Automated <br>
|
118 |
|
119 |
## Inference:
|
120 |
+
|
121 |
**Engine:** PyTorch <br>
|
122 |
**Test Hardware:** NVIDIA A100 GPU <br>
|
123 |
|
124 |
## Ethical Considerations:
|
125 |
+
|
126 |
+
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. For more detailed information on ethical considerations for this model, please see the Model Card++ Explainability, Bias, Safety & Security, and Privacy Subcards. Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
|
nv-modelcard++/privacy.md
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
-
Field
|
2 |
-
|
3 |
-
Generatable or reverse engineerable personal information?
|
4 |
-
Protected class data used to create this model?
|
5 |
-
Was consent obtained for any personal data used?
|
6 |
-
How often is dataset reviewed?
|
7 |
-
Is a mechanism in place to honor data subject right of access or deletion of personal data?
|
8 |
-
If personal collected for the development of the model, was it collected directly by NVIDIA?
|
9 |
-
If personal collected for the development of the model by NVIDIA, do you maintain or have access to disclosures made to data subjects?
|
10 |
-
If personal collected for the development of this AI model, was it minimized to only what was required?
|
11 |
-
Is data in dataset traceable?
|
12 |
-
Is there provenance for all datasets used in training?
|
13 |
-
Does data labeling (annotation, metadata) comply with privacy laws?
|
14 |
-
Is data compliant with data subject requests for data correction or removal, if such a request was made?
|
|
|
1 |
+
| Field | Response |
|
2 |
+
| :------------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------- |
|
3 |
+
| Generatable or reverse engineerable personal information? | None |
|
4 |
+
| Protected class data used to create this model? | None |
|
5 |
+
| Was consent obtained for any personal data used? | Not Applicable (No Personal Data) |
|
6 |
+
| How often is dataset reviewed? | Before Release |
|
7 |
+
| Is a mechanism in place to honor data subject right of access or deletion of personal data? | Not Applicable |
|
8 |
+
| If personal collected for the development of the model, was it collected directly by NVIDIA? | Not Applicable |
|
9 |
+
| If personal collected for the development of the model by NVIDIA, do you maintain or have access to disclosures made to data subjects? | Not Applicable |
|
10 |
+
| If personal collected for the development of this AI model, was it minimized to only what was required? | Not Applicable |
|
11 |
+
| Is data in dataset traceable? | Yes |
|
12 |
+
| Is there provenance for all datasets used in training? | Yes |
|
13 |
+
| Does data labeling (annotation, metadata) comply with privacy laws? | Yes |
|
14 |
+
| Is data compliant with data subject requests for data correction or removal, if such a request was made? | No, not possible with externally-sourced data. |
|
nv-modelcard++/safety.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
Field
|
2 |
-
|
3 |
-
Model Application(s): |
|
4 |
-
Describe the life critical impact (if present).
|
5 |
-
Use Case Restrictions:
|
6 |
-
Model and dataset restrictions:
|
|
|
1 |
+
| Field | Response |
|
2 |
+
| :---------------------------------------------- | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
3 |
+
| Model Application(s): | Synethic Audio Generation |
|
4 |
+
| Describe the life critical impact (if present). | Not Applicable |
|
5 |
+
| Use Case Restrictions: | None |
|
6 |
+
| Model and dataset restrictions: | The Principle of least privilege (PoLP) is applied limiting access for dataset generation and model development. Restrictions enforce dataset access during training, and dataset license constraints adhered to. |
|
utils.py
CHANGED
@@ -6,6 +6,7 @@ import os
|
|
6 |
import matplotlib
|
7 |
import torch
|
8 |
from torch.nn.utils import weight_norm
|
|
|
9 |
matplotlib.use("Agg")
|
10 |
import matplotlib.pylab as plt
|
11 |
from meldataset import MAX_WAV_VALUE
|
@@ -14,8 +15,7 @@ from scipy.io.wavfile import write
|
|
14 |
|
15 |
def plot_spectrogram(spectrogram):
|
16 |
fig, ax = plt.subplots(figsize=(10, 2))
|
17 |
-
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
18 |
-
interpolation='none')
|
19 |
plt.colorbar(im, ax=ax)
|
20 |
|
21 |
fig.canvas.draw()
|
@@ -24,10 +24,16 @@ def plot_spectrogram(spectrogram):
|
|
24 |
return fig
|
25 |
|
26 |
|
27 |
-
def plot_spectrogram_clipped(spectrogram, clip_max=2.):
|
28 |
fig, ax = plt.subplots(figsize=(10, 2))
|
29 |
-
im = ax.imshow(
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
plt.colorbar(im, ax=ax)
|
32 |
|
33 |
fig.canvas.draw()
|
@@ -49,32 +55,45 @@ def apply_weight_norm(m):
|
|
49 |
|
50 |
|
51 |
def get_padding(kernel_size, dilation=1):
|
52 |
-
return int((kernel_size*dilation - dilation)/2)
|
53 |
|
54 |
|
55 |
def load_checkpoint(filepath, device):
|
56 |
assert os.path.isfile(filepath)
|
57 |
-
print("Loading '{}'"
|
58 |
checkpoint_dict = torch.load(filepath, map_location=device)
|
59 |
print("Complete.")
|
60 |
return checkpoint_dict
|
61 |
|
62 |
|
63 |
def save_checkpoint(filepath, obj):
|
64 |
-
print("Saving checkpoint to {}"
|
65 |
torch.save(obj, filepath)
|
66 |
print("Complete.")
|
67 |
|
68 |
|
69 |
-
def scan_checkpoint(cp_dir, prefix):
|
70 |
-
|
|
|
71 |
cp_list = glob.glob(pattern)
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
def save_audio(audio, path, sr):
|
77 |
# wav: torch with 1d shape
|
78 |
audio = audio * MAX_WAV_VALUE
|
79 |
-
audio = audio.cpu().numpy().astype(
|
80 |
-
write(path, sr, audio)
|
|
|
6 |
import matplotlib
|
7 |
import torch
|
8 |
from torch.nn.utils import weight_norm
|
9 |
+
|
10 |
matplotlib.use("Agg")
|
11 |
import matplotlib.pylab as plt
|
12 |
from meldataset import MAX_WAV_VALUE
|
|
|
15 |
|
16 |
def plot_spectrogram(spectrogram):
|
17 |
fig, ax = plt.subplots(figsize=(10, 2))
|
18 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
|
|
19 |
plt.colorbar(im, ax=ax)
|
20 |
|
21 |
fig.canvas.draw()
|
|
|
24 |
return fig
|
25 |
|
26 |
|
27 |
+
def plot_spectrogram_clipped(spectrogram, clip_max=2.0):
|
28 |
fig, ax = plt.subplots(figsize=(10, 2))
|
29 |
+
im = ax.imshow(
|
30 |
+
spectrogram,
|
31 |
+
aspect="auto",
|
32 |
+
origin="lower",
|
33 |
+
interpolation="none",
|
34 |
+
vmin=1e-6,
|
35 |
+
vmax=clip_max,
|
36 |
+
)
|
37 |
plt.colorbar(im, ax=ax)
|
38 |
|
39 |
fig.canvas.draw()
|
|
|
55 |
|
56 |
|
57 |
def get_padding(kernel_size, dilation=1):
|
58 |
+
return int((kernel_size * dilation - dilation) / 2)
|
59 |
|
60 |
|
61 |
def load_checkpoint(filepath, device):
|
62 |
assert os.path.isfile(filepath)
|
63 |
+
print(f"Loading '{filepath}'")
|
64 |
checkpoint_dict = torch.load(filepath, map_location=device)
|
65 |
print("Complete.")
|
66 |
return checkpoint_dict
|
67 |
|
68 |
|
69 |
def save_checkpoint(filepath, obj):
|
70 |
+
print(f"Saving checkpoint to {filepath}")
|
71 |
torch.save(obj, filepath)
|
72 |
print("Complete.")
|
73 |
|
74 |
|
75 |
+
def scan_checkpoint(cp_dir, prefix, renamed_file=None):
|
76 |
+
# Fallback to original scanning logic first
|
77 |
+
pattern = os.path.join(cp_dir, prefix + "????????")
|
78 |
cp_list = glob.glob(pattern)
|
79 |
+
|
80 |
+
if len(cp_list) > 0:
|
81 |
+
last_checkpoint_path = sorted(cp_list)[-1]
|
82 |
+
print(f"[INFO] Resuming from checkpoint: '{last_checkpoint_path}'")
|
83 |
+
return last_checkpoint_path
|
84 |
+
|
85 |
+
# If no pattern-based checkpoints are found, check for renamed file
|
86 |
+
if renamed_file:
|
87 |
+
renamed_path = os.path.join(cp_dir, renamed_file)
|
88 |
+
if os.path.isfile(renamed_path):
|
89 |
+
print(f"[INFO] Resuming from renamed checkpoint: '{renamed_file}'")
|
90 |
+
return renamed_path
|
91 |
+
|
92 |
+
return None
|
93 |
+
|
94 |
|
95 |
def save_audio(audio, path, sr):
|
96 |
# wav: torch with 1d shape
|
97 |
audio = audio * MAX_WAV_VALUE
|
98 |
+
audio = audio.cpu().numpy().astype("int16")
|
99 |
+
write(path, sr, audio)
|