|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import os |
|
import random |
|
import torch |
|
import torch.utils.data |
|
import numpy as np |
|
from librosa.util import normalize |
|
from scipy.io.wavfile import read |
|
from librosa.filters import mel as librosa_mel_fn |
|
import pathlib |
|
from tqdm import tqdm |
|
|
|
MAX_WAV_VALUE = 32767.0 |
|
|
|
|
|
def load_wav(full_path, sr_target): |
|
sampling_rate, data = read(full_path) |
|
if sampling_rate != sr_target: |
|
raise RuntimeError( |
|
f"Sampling rate of the file {full_path} is {sampling_rate} Hz, but the model requires {sr_target} Hz" |
|
) |
|
return data, sampling_rate |
|
|
|
|
|
def dynamic_range_compression(x, C=1, clip_val=1e-5): |
|
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) |
|
|
|
|
|
def dynamic_range_decompression(x, C=1): |
|
return np.exp(x) / C |
|
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): |
|
return torch.log(torch.clamp(x, min=clip_val) * C) |
|
|
|
|
|
def dynamic_range_decompression_torch(x, C=1): |
|
return torch.exp(x) / C |
|
|
|
|
|
def spectral_normalize_torch(magnitudes): |
|
return dynamic_range_compression_torch(magnitudes) |
|
|
|
|
|
def spectral_de_normalize_torch(magnitudes): |
|
return dynamic_range_decompression_torch(magnitudes) |
|
|
|
|
|
mel_basis_cache = {} |
|
hann_window_cache = {} |
|
|
|
|
|
def mel_spectrogram( |
|
y: torch.Tensor, |
|
n_fft: int, |
|
num_mels: int, |
|
sampling_rate: int, |
|
hop_size: int, |
|
win_size: int, |
|
fmin: int, |
|
fmax: int = None, |
|
center: bool = False, |
|
) -> torch.Tensor: |
|
""" |
|
Calculate the mel spectrogram of an input signal. |
|
This function uses slaney norm for the librosa mel filterbank (using librosa.filters.mel) and uses Hann window for STFT (using torch.stft). |
|
|
|
Args: |
|
y (torch.Tensor): Input signal. |
|
n_fft (int): FFT size. |
|
num_mels (int): Number of mel bins. |
|
sampling_rate (int): Sampling rate of the input signal. |
|
hop_size (int): Hop size for STFT. |
|
win_size (int): Window size for STFT. |
|
fmin (int): Minimum frequency for mel filterbank. |
|
fmax (int): Maximum frequency for mel filterbank. If None, defaults to half the sampling rate (fmax = sr / 2.0) inside librosa_mel_fn |
|
center (bool): Whether to pad the input to center the frames. Default is False. |
|
|
|
Returns: |
|
torch.Tensor: Mel spectrogram. |
|
""" |
|
if torch.min(y) < -1.0: |
|
print(f"[WARNING] Min value of input waveform signal is {torch.min(y)}") |
|
if torch.max(y) > 1.0: |
|
print(f"[WARNING] Max value of input waveform signal is {torch.max(y)}") |
|
|
|
device = y.device |
|
key = f"{n_fft}_{num_mels}_{sampling_rate}_{hop_size}_{win_size}_{fmin}_{fmax}_{device}" |
|
|
|
if key not in mel_basis_cache: |
|
mel = librosa_mel_fn( |
|
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax |
|
) |
|
mel_basis_cache[key] = torch.from_numpy(mel).float().to(device) |
|
hann_window_cache[key] = torch.hann_window(win_size).to(device) |
|
|
|
mel_basis = mel_basis_cache[key] |
|
hann_window = hann_window_cache[key] |
|
|
|
padding = (n_fft - hop_size) // 2 |
|
y = torch.nn.functional.pad( |
|
y.unsqueeze(1), (padding, padding), mode="reflect" |
|
).squeeze(1) |
|
|
|
spec = torch.stft( |
|
y, |
|
n_fft, |
|
hop_length=hop_size, |
|
win_length=win_size, |
|
window=hann_window, |
|
center=center, |
|
pad_mode="reflect", |
|
normalized=False, |
|
onesided=True, |
|
return_complex=True, |
|
) |
|
spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9) |
|
|
|
mel_spec = torch.matmul(mel_basis, spec) |
|
mel_spec = spectral_normalize_torch(mel_spec) |
|
|
|
return mel_spec |
|
|
|
|
|
def get_mel_spectrogram(wav, h): |
|
""" |
|
Generate mel spectrogram from a waveform using given hyperparameters. |
|
|
|
Args: |
|
wav (torch.Tensor): Input waveform. |
|
h: Hyperparameters object with attributes n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax. |
|
|
|
Returns: |
|
torch.Tensor: Mel spectrogram. |
|
""" |
|
return mel_spectrogram( |
|
wav, |
|
h.n_fft, |
|
h.num_mels, |
|
h.sampling_rate, |
|
h.hop_size, |
|
h.win_size, |
|
h.fmin, |
|
h.fmax, |
|
) |
|
|
|
|
|
def get_dataset_filelist(a): |
|
training_files = [] |
|
validation_files = [] |
|
list_unseen_validation_files = [] |
|
|
|
with open(a.input_training_file, "r", encoding="utf-8") as fi: |
|
training_files = [ |
|
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav") |
|
for x in fi.read().split("\n") |
|
if len(x) > 0 |
|
] |
|
print(f"first training file: {training_files[0]}") |
|
|
|
with open(a.input_validation_file, "r", encoding="utf-8") as fi: |
|
validation_files = [ |
|
os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav") |
|
for x in fi.read().split("\n") |
|
if len(x) > 0 |
|
] |
|
print(f"first validation file: {validation_files[0]}") |
|
|
|
for i in range(len(a.list_input_unseen_validation_file)): |
|
with open(a.list_input_unseen_validation_file[i], "r", encoding="utf-8") as fi: |
|
unseen_validation_files = [ |
|
os.path.join(a.list_input_unseen_wavs_dir[i], x.split("|")[0] + ".wav") |
|
for x in fi.read().split("\n") |
|
if len(x) > 0 |
|
] |
|
print( |
|
f"first unseen {i}th validation fileset: {unseen_validation_files[0]}" |
|
) |
|
list_unseen_validation_files.append(unseen_validation_files) |
|
|
|
return training_files, validation_files, list_unseen_validation_files |
|
|
|
|
|
class MelDataset(torch.utils.data.Dataset): |
|
def __init__( |
|
self, |
|
training_files, |
|
hparams, |
|
segment_size, |
|
n_fft, |
|
num_mels, |
|
hop_size, |
|
win_size, |
|
sampling_rate, |
|
fmin, |
|
fmax, |
|
split=True, |
|
shuffle=True, |
|
n_cache_reuse=1, |
|
device=None, |
|
fmax_loss=None, |
|
fine_tuning=False, |
|
base_mels_path=None, |
|
is_seen=True, |
|
): |
|
self.audio_files = training_files |
|
random.seed(1234) |
|
if shuffle: |
|
random.shuffle(self.audio_files) |
|
self.hparams = hparams |
|
self.is_seen = is_seen |
|
if self.is_seen: |
|
self.name = pathlib.Path(self.audio_files[0]).parts[0] |
|
else: |
|
self.name = "-".join(pathlib.Path(self.audio_files[0]).parts[:2]).strip("/") |
|
|
|
self.segment_size = segment_size |
|
self.sampling_rate = sampling_rate |
|
self.split = split |
|
self.n_fft = n_fft |
|
self.num_mels = num_mels |
|
self.hop_size = hop_size |
|
self.win_size = win_size |
|
self.fmin = fmin |
|
self.fmax = fmax |
|
self.fmax_loss = fmax_loss |
|
self.cached_wav = None |
|
self.n_cache_reuse = n_cache_reuse |
|
self._cache_ref_count = 0 |
|
self.device = device |
|
self.fine_tuning = fine_tuning |
|
self.base_mels_path = base_mels_path |
|
|
|
print("[INFO] checking dataset integrity...") |
|
for i in tqdm(range(len(self.audio_files))): |
|
assert os.path.exists( |
|
self.audio_files[i] |
|
), f"{self.audio_files[i]} not found" |
|
|
|
def __getitem__(self, index): |
|
filename = self.audio_files[index] |
|
if self._cache_ref_count == 0: |
|
audio, sampling_rate = load_wav(filename, self.sampling_rate) |
|
audio = audio / MAX_WAV_VALUE |
|
if not self.fine_tuning: |
|
audio = normalize(audio) * 0.95 |
|
self.cached_wav = audio |
|
if sampling_rate != self.sampling_rate: |
|
raise ValueError( |
|
f"{sampling_rate} SR doesn't match target {self.sampling_rate} SR" |
|
) |
|
self._cache_ref_count = self.n_cache_reuse |
|
else: |
|
audio = self.cached_wav |
|
self._cache_ref_count -= 1 |
|
|
|
audio = torch.FloatTensor(audio) |
|
audio = audio.unsqueeze(0) |
|
|
|
if not self.fine_tuning: |
|
if self.split: |
|
if audio.size(1) >= self.segment_size: |
|
max_audio_start = audio.size(1) - self.segment_size |
|
audio_start = random.randint(0, max_audio_start) |
|
audio = audio[:, audio_start : audio_start + self.segment_size] |
|
else: |
|
audio = torch.nn.functional.pad( |
|
audio, (0, self.segment_size - audio.size(1)), "constant" |
|
) |
|
|
|
mel = mel_spectrogram( |
|
audio, |
|
self.n_fft, |
|
self.num_mels, |
|
self.sampling_rate, |
|
self.hop_size, |
|
self.win_size, |
|
self.fmin, |
|
self.fmax, |
|
center=False, |
|
) |
|
else: |
|
|
|
if (audio.size(1) % self.hop_size) != 0: |
|
audio = audio[:, : -(audio.size(1) % self.hop_size)] |
|
mel = mel_spectrogram( |
|
audio, |
|
self.n_fft, |
|
self.num_mels, |
|
self.sampling_rate, |
|
self.hop_size, |
|
self.win_size, |
|
self.fmin, |
|
self.fmax, |
|
center=False, |
|
) |
|
assert ( |
|
audio.shape[1] == mel.shape[2] * self.hop_size |
|
), f"audio shape {audio.shape} mel shape {mel.shape}" |
|
|
|
else: |
|
mel = np.load( |
|
os.path.join( |
|
self.base_mels_path, |
|
os.path.splitext(os.path.split(filename)[-1])[0] + ".npy", |
|
) |
|
) |
|
mel = torch.from_numpy(mel) |
|
|
|
if len(mel.shape) < 3: |
|
mel = mel.unsqueeze(0) |
|
|
|
if self.split: |
|
frames_per_seg = math.ceil(self.segment_size / self.hop_size) |
|
|
|
if audio.size(1) >= self.segment_size: |
|
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1) |
|
mel = mel[:, :, mel_start : mel_start + frames_per_seg] |
|
audio = audio[ |
|
:, |
|
mel_start |
|
* self.hop_size : (mel_start + frames_per_seg) |
|
* self.hop_size, |
|
] |
|
else: |
|
mel = torch.nn.functional.pad( |
|
mel, (0, frames_per_seg - mel.size(2)), "constant" |
|
) |
|
audio = torch.nn.functional.pad( |
|
audio, (0, self.segment_size - audio.size(1)), "constant" |
|
) |
|
|
|
mel_loss = mel_spectrogram( |
|
audio, |
|
self.n_fft, |
|
self.num_mels, |
|
self.sampling_rate, |
|
self.hop_size, |
|
self.win_size, |
|
self.fmin, |
|
self.fmax_loss, |
|
center=False, |
|
) |
|
|
|
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze()) |
|
|
|
def __len__(self): |
|
return len(self.audio_files) |
|
|