File size: 4,368 Bytes
bb3cc84 baefef7 bb3cc84 baefef7 bb3cc84 743e893 baefef7 f9997e2 baefef7 d1b529c baefef7 9a37149 baefef7 9a37149 baefef7 9a37149 c46c6ff 9a37149 96ac9a1 9a37149 baefef7 d1b529c baefef7 d1b529c baefef7 d1b529c baefef7 2d335ea baefef7 d1b529c baefef7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
language:
- en
library_name: nemo
datasets:
- the_pile
tags:
- text generation
- pytorch
- causal-lm
license: cc-by-4.0
---
# NeMo Megatron-GPT 1.3B
<style>
img {
display: inline;
}
</style>
|[![Model architecture](https://img.shields.io/badge/Model%20Arch-Transformer%20Decoder-green)](#model-architecture)|[![Model size](https://img.shields.io/badge/Params-1.3B-green)](#model-architecture)|[![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets)
## Model Description
Megatron-GPT 1.3B is a transformer-based language model. GPT refers to a class of transformer decoder-only models similar to GPT-2 and 3 while 1.3B refers to the total trainable parameter count (1.3 Billion) [1, 2]. It has Tensor Parallelism (TP) of 1, Pipeline Parallelism (PP) of 1 and should fit on a single NVIDIA GPU.
This model was trained with [NeMo Megatron](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/nemo_megatron/intro.html).
## Getting started
### Step 1: Install NeMo and dependencies
You will need to install NVIDIA Apex and NeMo.
```
git clone https://github.com/ericharper/apex.git
cd apex
git checkout nm_v1.11.0
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--fast_layer_norm" --global-option="--distributed_adam" --global-option="--deprecated_fused_adam" ./
```
```
pip install nemo_toolkit['nlp']==1.11.0
```
Alternatively, you can use NeMo Megatron training docker container with all dependencies pre-installed.
### Step 2: Launch eval server
**Note.** The model has been trained with Tensor Parallelism (TP) of 1 and Pipeline Parallelism (PP) of 1 and should fit on a single NVIDIA GPU.
```
git clone https://github.com/NVIDIA/NeMo.git
cd NeMo/examples/nlp/language_modeling
git checkout v1.11.0
python megatron_gpt_eval.py gpt_model_file=nemo_gpt1.3B_fp16.nemo server=True tensor_model_parallel_size=1 trainer.devices=1
```
### Step 3: Send prompts to you model!
```python
import json
import requests
port_num = 5555
headers = {"Content-Type": "application/json"}
def request_data(data):
resp = requests.put('http://localhost:{}/generate'.format(port_num),
data=json.dumps(data),
headers=headers)
sentences = resp.json()['sentences']
return sentences
data = {
"sentences": ["Tell me an interesting fact about space travel."]*1,
"tokens_to_generate": 50,
"temperature": 1.0,
"add_BOS": True,
"top_k": 0,
"top_p": 0.9,
"greedy": False,
"all_probs": False,
"repetition_penalty": 1.2,
"min_tokens_to_generate": 2,
}
sentences = request_data(data)
print(sentences)
```
## Training Data
The model was trained on ["The Piles" dataset prepared by Eleuther.AI](https://pile.eleuther.ai/). [4]
## Evaluation results
*Zero-shot performance.* Evaluated using [LM Evaluation Test Suite from AI21](https://github.com/AI21Labs/lm-evaluation)
| ARC-Challenge | ARC-Easy | RACE-middle | RACE-high | Winogrande | RTE | BoolQA | HellaSwag | PiQA |
| ------------- | -------- | ----------- | --------- | ---------- | --- | ------ | --------- | ---- |
| 0.3012 | 0.4596 | 0.459 | 0.3797 | 0.5343 | 0.5451 | 0.5979 | 0.4443 | 0.6834 |
## Limitations
The model was trained on the data originally crawled from the Internet. This data contains toxic language and societal biases. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts.
## References
[1] [Improving Language Understanding by Generative Pre-Training](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf)
[2] [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/pdf/1909.08053.pdf)
[3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
[4] [The Pile: An 800GB Dataset of Diverse Text for Language Modeling](https://arxiv.org/abs/2101.00027)
## Licence
License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
|