Automatic Speech Recognition
NeMo
Spanish
FastConformer
NeMo
Spanish
Nune1 commited on
Commit
57634be
·
verified ·
1 Parent(s): c30b6bb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -134,7 +134,7 @@ The model was trained on around 3400 hours of Spanish speech data.
134
  The performance of Automatic Speech Recognition models is measuring using Character Error Rate (CER) and Word Error Rate (WER).
135
  Table 1 summarizes the performance of the model with the Transducer and CTC decoders across different datasets.
136
 
137
- | Model | MCV %WER/CER test |MLS %WER/CER test | Voxpopuli %WER/CER test |Fisher %WER/CER test |
138
  |-----------|--------------|---------------|--------------|---------------|
139
  | RNNT head | 7.58/ 1.96 | 12.43 / 2.99 |9.59 / 3.67 | 30.76 / 11.49 |
140
  | CTC head | 8.23 / 2.20 | 12.63 / 3.11 | 9.93 / 3.79 | 31.20 / 11.44 |
@@ -142,7 +142,7 @@ Table 1 summarizes the performance of the model with the Transducer and CTC deco
142
 
143
  Table 2 provides the performance of the model when punctuation marks are separated during evaluation, using both the Transducer and CTC decoders.
144
 
145
- | Model | MCV %WER/CER test |MLS %WER/CER test | Voxpopuli %WER/CER test |Fisher %WER/CER test |
146
  |-----------|--------------|---------------|--------------|---------------|
147
  | RNNT head | 6.79 / 2.16 | 11.63/ 3.96 |8.84/ 4.06| 27.88 / 13.40 |
148
  | CTC head | 7.39 / 2.39 | 11.81 / 4.01 | 9.17 / 4.17| 27.81 / 13.14 |
 
134
  The performance of Automatic Speech Recognition models is measuring using Character Error Rate (CER) and Word Error Rate (WER).
135
  Table 1 summarizes the performance of the model with the Transducer and CTC decoders across different datasets.
136
 
137
+ | Model | MCV %WER/CER |MLS %WER/CER | Voxpopuli %WER/CER |Fisher %WER/CER|
138
  |-----------|--------------|---------------|--------------|---------------|
139
  | RNNT head | 7.58/ 1.96 | 12.43 / 2.99 |9.59 / 3.67 | 30.76 / 11.49 |
140
  | CTC head | 8.23 / 2.20 | 12.63 / 3.11 | 9.93 / 3.79 | 31.20 / 11.44 |
 
142
 
143
  Table 2 provides the performance of the model when punctuation marks are separated during evaluation, using both the Transducer and CTC decoders.
144
 
145
+ | Model | MCV %WER/CER|MLS %WER/CER| Voxpopuli %WER/CER|Fisher %WER/CER|
146
  |-----------|--------------|---------------|--------------|---------------|
147
  | RNNT head | 6.79 / 2.16 | 11.63/ 3.96 |8.84/ 4.06| 27.88 / 13.40 |
148
  | CTC head | 7.39 / 2.39 | 11.81 / 4.01 | 9.17 / 4.17| 27.81 / 13.14 |