--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-lg-cased-ms-ner-test results: [] --- # roberta-lg-cased-ms-ner-test This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1631 - Precision: 0.8047 - Recall: 0.8306 - F1: 0.8174 - Accuracy: 0.9660 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2027 | 1.0 | 2712 | 0.1739 | 0.7335 | 0.7283 | 0.7309 | 0.9518 | | 0.1304 | 2.0 | 5424 | 0.1446 | 0.7860 | 0.7674 | 0.7766 | 0.9605 | | 0.0842 | 3.0 | 8136 | 0.1393 | 0.7892 | 0.8118 | 0.8003 | 0.9629 | | 0.0556 | 4.0 | 10848 | 0.1498 | 0.8001 | 0.8288 | 0.8142 | 0.9648 | | 0.0363 | 5.0 | 13560 | 0.1631 | 0.8047 | 0.8306 | 0.8174 | 0.9660 | ### Framework versions - Transformers 4.39.3 - Pytorch 1.12.0 - Datasets 2.18.0 - Tokenizers 0.15.2