|
from __future__ import annotations |
|
|
|
import re |
|
from collections import namedtuple |
|
from typing import List |
|
import lark |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
schedule_parser = lark.Lark(r""" |
|
!start: (prompt | /[][():]/+)* |
|
prompt: (emphasized | scheduled | alternate | plain | WHITESPACE)* |
|
!emphasized: "(" prompt ")" |
|
| "(" prompt ":" prompt ")" |
|
| "[" prompt "]" |
|
scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER "]" |
|
alternate: "[" prompt ("|" prompt)+ "]" |
|
WHITESPACE: /\s+/ |
|
plain: /([^\\\[\]():|]|\\.)+/ |
|
%import common.SIGNED_NUMBER -> NUMBER |
|
""") |
|
|
|
def get_learned_conditioning_prompt_schedules(prompts, steps): |
|
""" |
|
>>> g = lambda p: get_learned_conditioning_prompt_schedules([p], 10)[0] |
|
>>> g("test") |
|
[[10, 'test']] |
|
>>> g("a [b:3]") |
|
[[3, 'a '], [10, 'a b']] |
|
>>> g("a [b: 3]") |
|
[[3, 'a '], [10, 'a b']] |
|
>>> g("a [[[b]]:2]") |
|
[[2, 'a '], [10, 'a [[b]]']] |
|
>>> g("[(a:2):3]") |
|
[[3, ''], [10, '(a:2)']] |
|
>>> g("a [b : c : 1] d") |
|
[[1, 'a b d'], [10, 'a c d']] |
|
>>> g("a[b:[c:d:2]:1]e") |
|
[[1, 'abe'], [2, 'ace'], [10, 'ade']] |
|
>>> g("a [unbalanced") |
|
[[10, 'a [unbalanced']] |
|
>>> g("a [b:.5] c") |
|
[[5, 'a c'], [10, 'a b c']] |
|
>>> g("a [{b|d{:.5] c") # not handling this right now |
|
[[5, 'a c'], [10, 'a {b|d{ c']] |
|
>>> g("((a][:b:c [d:3]") |
|
[[3, '((a][:b:c '], [10, '((a][:b:c d']] |
|
>>> g("[a|(b:1.1)]") |
|
[[1, 'a'], [2, '(b:1.1)'], [3, 'a'], [4, '(b:1.1)'], [5, 'a'], [6, '(b:1.1)'], [7, 'a'], [8, '(b:1.1)'], [9, 'a'], [10, '(b:1.1)']] |
|
""" |
|
|
|
def collect_steps(steps, tree): |
|
res = [steps] |
|
|
|
class CollectSteps(lark.Visitor): |
|
def scheduled(self, tree): |
|
tree.children[-1] = float(tree.children[-1]) |
|
if tree.children[-1] < 1: |
|
tree.children[-1] *= steps |
|
tree.children[-1] = min(steps, int(tree.children[-1])) |
|
res.append(tree.children[-1]) |
|
|
|
def alternate(self, tree): |
|
res.extend(range(1, steps+1)) |
|
|
|
CollectSteps().visit(tree) |
|
return sorted(set(res)) |
|
|
|
def at_step(step, tree): |
|
class AtStep(lark.Transformer): |
|
def scheduled(self, args): |
|
before, after, _, when = args |
|
yield before or () if step <= when else after |
|
def alternate(self, args): |
|
yield next(args[(step - 1)%len(args)]) |
|
def start(self, args): |
|
def flatten(x): |
|
if type(x) == str: |
|
yield x |
|
else: |
|
for gen in x: |
|
yield from flatten(gen) |
|
return ''.join(flatten(args)) |
|
def plain(self, args): |
|
yield args[0].value |
|
def __default__(self, data, children, meta): |
|
for child in children: |
|
yield child |
|
return AtStep().transform(tree) |
|
|
|
def get_schedule(prompt): |
|
try: |
|
tree = schedule_parser.parse(prompt) |
|
except lark.exceptions.LarkError: |
|
if 0: |
|
import traceback |
|
traceback.print_exc() |
|
return [[steps, prompt]] |
|
return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)] |
|
|
|
promptdict = {prompt: get_schedule(prompt) for prompt in set(prompts)} |
|
return [promptdict[prompt] for prompt in prompts] |
|
|
|
|
|
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"]) |
|
|
|
|
|
class SdConditioning(list): |
|
""" |
|
A list with prompts for stable diffusion's conditioner model. |
|
Can also specify width and height of created image - SDXL needs it. |
|
""" |
|
def __init__(self, prompts, is_negative_prompt=False, width=None, height=None, copy_from=None): |
|
super().__init__() |
|
self.extend(prompts) |
|
|
|
if copy_from is None: |
|
copy_from = prompts |
|
|
|
self.is_negative_prompt = is_negative_prompt or getattr(copy_from, 'is_negative_prompt', False) |
|
self.width = width or getattr(copy_from, 'width', None) |
|
self.height = height or getattr(copy_from, 'height', None) |
|
|
|
|
|
|
|
def get_learned_conditioning(model, prompts: SdConditioning | list[str], steps): |
|
"""converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond), |
|
and the sampling step at which this condition is to be replaced by the next one. |
|
|
|
Input: |
|
(model, ['a red crown', 'a [blue:green:5] jeweled crown'], 20) |
|
|
|
Output: |
|
[ |
|
[ |
|
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0523, ..., -0.4901, -0.3066, 0.0674], ..., [ 0.3317, -0.5102, -0.4066, ..., 0.4119, -0.7647, -1.0160]], device='cuda:0')) |
|
], |
|
[ |
|
ScheduledPromptConditioning(end_at_step=5, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.0192, 0.3867, -0.4644, ..., 0.1135, -0.3696, -0.4625]], device='cuda:0')), |
|
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.7352, -0.4356, -0.7888, ..., 0.6994, -0.4312, -1.2593]], device='cuda:0')) |
|
] |
|
] |
|
""" |
|
res = [] |
|
|
|
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps) |
|
cache = {} |
|
|
|
for prompt, prompt_schedule in zip(prompts, prompt_schedules): |
|
|
|
cached = cache.get(prompt, None) |
|
if cached is not None: |
|
res.append(cached) |
|
continue |
|
|
|
texts = SdConditioning([x[1] for x in prompt_schedule], copy_from=prompts) |
|
conds = model.get_learned_conditioning(texts) |
|
|
|
cond_schedule = [] |
|
for i, (end_at_step, _) in enumerate(prompt_schedule): |
|
if isinstance(conds, dict): |
|
cond = {k: v[i] for k, v in conds.items()} |
|
else: |
|
cond = conds[i] |
|
|
|
cond_schedule.append(ScheduledPromptConditioning(end_at_step, cond)) |
|
|
|
cache[prompt] = cond_schedule |
|
res.append(cond_schedule) |
|
|
|
return res |
|
|
|
|
|
re_AND = re.compile(r"\bAND\b") |
|
re_weight = re.compile(r"^((?:\s|.)*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$") |
|
|
|
|
|
def get_multicond_prompt_list(prompts: SdConditioning | list[str]): |
|
res_indexes = [] |
|
|
|
prompt_indexes = {} |
|
prompt_flat_list = SdConditioning(prompts) |
|
prompt_flat_list.clear() |
|
|
|
for prompt in prompts: |
|
subprompts = re_AND.split(prompt) |
|
|
|
indexes = [] |
|
for subprompt in subprompts: |
|
match = re_weight.search(subprompt) |
|
|
|
text, weight = match.groups() if match is not None else (subprompt, 1.0) |
|
|
|
weight = float(weight) if weight is not None else 1.0 |
|
|
|
index = prompt_indexes.get(text, None) |
|
if index is None: |
|
index = len(prompt_flat_list) |
|
prompt_flat_list.append(text) |
|
prompt_indexes[text] = index |
|
|
|
indexes.append((index, weight)) |
|
|
|
res_indexes.append(indexes) |
|
|
|
return res_indexes, prompt_flat_list, prompt_indexes |
|
|
|
|
|
class ComposableScheduledPromptConditioning: |
|
def __init__(self, schedules, weight=1.0): |
|
self.schedules: List[ScheduledPromptConditioning] = schedules |
|
self.weight: float = weight |
|
|
|
|
|
class MulticondLearnedConditioning: |
|
def __init__(self, shape, batch): |
|
self.shape: tuple = shape |
|
self.batch: List[List[ComposableScheduledPromptConditioning]] = batch |
|
|
|
|
|
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning: |
|
"""same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt. |
|
For each prompt, the list is obtained by splitting the prompt using the AND separator. |
|
|
|
https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/ |
|
""" |
|
|
|
res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts) |
|
|
|
learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps) |
|
|
|
res = [] |
|
for indexes in res_indexes: |
|
res.append([ComposableScheduledPromptConditioning(learned_conditioning[i], weight) for i, weight in indexes]) |
|
|
|
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res) |
|
|
|
|
|
class DictWithShape(dict): |
|
def __init__(self, x, shape): |
|
super().__init__() |
|
self.update(x) |
|
|
|
@property |
|
def shape(self): |
|
return self["crossattn"].shape |
|
|
|
|
|
def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step): |
|
param = c[0][0].cond |
|
is_dict = isinstance(param, dict) |
|
|
|
if is_dict: |
|
dict_cond = param |
|
res = {k: torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype) for k, param in dict_cond.items()} |
|
res = DictWithShape(res, (len(c),) + dict_cond['crossattn'].shape) |
|
else: |
|
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype) |
|
|
|
for i, cond_schedule in enumerate(c): |
|
target_index = 0 |
|
for current, entry in enumerate(cond_schedule): |
|
if current_step <= entry.end_at_step: |
|
target_index = current |
|
break |
|
|
|
if is_dict: |
|
for k, param in cond_schedule[target_index].cond.items(): |
|
res[k][i] = param |
|
else: |
|
res[i] = cond_schedule[target_index].cond |
|
|
|
return res |
|
|
|
|
|
def stack_conds(tensors): |
|
|
|
|
|
token_count = max([x.shape[0] for x in tensors]) |
|
for i in range(len(tensors)): |
|
if tensors[i].shape[0] != token_count: |
|
last_vector = tensors[i][-1:] |
|
last_vector_repeated = last_vector.repeat([token_count - tensors[i].shape[0], 1]) |
|
tensors[i] = torch.vstack([tensors[i], last_vector_repeated]) |
|
|
|
return torch.stack(tensors) |
|
|
|
|
|
|
|
def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step): |
|
param = c.batch[0][0].schedules[0].cond |
|
|
|
tensors = [] |
|
conds_list = [] |
|
|
|
for composable_prompts in c.batch: |
|
conds_for_batch = [] |
|
|
|
for composable_prompt in composable_prompts: |
|
target_index = 0 |
|
for current, entry in enumerate(composable_prompt.schedules): |
|
if current_step <= entry.end_at_step: |
|
target_index = current |
|
break |
|
|
|
conds_for_batch.append((len(tensors), composable_prompt.weight)) |
|
tensors.append(composable_prompt.schedules[target_index].cond) |
|
|
|
conds_list.append(conds_for_batch) |
|
|
|
if isinstance(tensors[0], dict): |
|
keys = list(tensors[0].keys()) |
|
stacked = {k: stack_conds([x[k] for x in tensors]) for k in keys} |
|
stacked = DictWithShape(stacked, stacked['crossattn'].shape) |
|
else: |
|
stacked = stack_conds(tensors).to(device=param.device, dtype=param.dtype) |
|
|
|
return conds_list, stacked |
|
|
|
|
|
re_attention = re.compile(r""" |
|
\\\(| |
|
\\\)| |
|
\\\[| |
|
\\]| |
|
\\\\| |
|
\\| |
|
\(| |
|
\[| |
|
:([+-]?[.\d]+)\)| |
|
\)| |
|
]| |
|
[^\\()\[\]:]+| |
|
: |
|
""", re.X) |
|
|
|
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S) |
|
|
|
def parse_prompt_attention(text): |
|
""" |
|
Parses a string with attention tokens and returns a list of pairs: text and its associated weight. |
|
Accepted tokens are: |
|
(abc) - increases attention to abc by a multiplier of 1.1 |
|
(abc:3.12) - increases attention to abc by a multiplier of 3.12 |
|
[abc] - decreases attention to abc by a multiplier of 1.1 |
|
\( - literal character '(' |
|
\[ - literal character '[' |
|
\) - literal character ')' |
|
\] - literal character ']' |
|
\\ - literal character '\' |
|
anything else - just text |
|
|
|
>>> parse_prompt_attention('normal text') |
|
[['normal text', 1.0]] |
|
>>> parse_prompt_attention('an (important) word') |
|
[['an ', 1.0], ['important', 1.1], [' word', 1.0]] |
|
>>> parse_prompt_attention('(unbalanced') |
|
[['unbalanced', 1.1]] |
|
>>> parse_prompt_attention('\(literal\]') |
|
[['(literal]', 1.0]] |
|
>>> parse_prompt_attention('(unnecessary)(parens)') |
|
[['unnecessaryparens', 1.1]] |
|
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') |
|
[['a ', 1.0], |
|
['house', 1.5730000000000004], |
|
[' ', 1.1], |
|
['on', 1.0], |
|
[' a ', 1.1], |
|
['hill', 0.55], |
|
[', sun, ', 1.1], |
|
['sky', 1.4641000000000006], |
|
['.', 1.1]] |
|
""" |
|
|
|
res = [] |
|
round_brackets = [] |
|
square_brackets = [] |
|
|
|
round_bracket_multiplier = 1.1 |
|
square_bracket_multiplier = 1 / 1.1 |
|
|
|
def multiply_range(start_position, multiplier): |
|
for p in range(start_position, len(res)): |
|
res[p][1] *= multiplier |
|
|
|
for m in re_attention.finditer(text): |
|
text = m.group(0) |
|
weight = m.group(1) |
|
|
|
if text.startswith('\\'): |
|
res.append([text[1:], 1.0]) |
|
elif text == '(': |
|
round_brackets.append(len(res)) |
|
elif text == '[': |
|
square_brackets.append(len(res)) |
|
elif weight is not None and round_brackets: |
|
multiply_range(round_brackets.pop(), float(weight)) |
|
elif text == ')' and round_brackets: |
|
multiply_range(round_brackets.pop(), round_bracket_multiplier) |
|
elif text == ']' and square_brackets: |
|
multiply_range(square_brackets.pop(), square_bracket_multiplier) |
|
else: |
|
parts = re.split(re_break, text) |
|
for i, part in enumerate(parts): |
|
if i > 0: |
|
res.append(["BREAK", -1]) |
|
res.append([part, 1.0]) |
|
|
|
for pos in round_brackets: |
|
multiply_range(pos, round_bracket_multiplier) |
|
|
|
for pos in square_brackets: |
|
multiply_range(pos, square_bracket_multiplier) |
|
|
|
if len(res) == 0: |
|
res = [["", 1.0]] |
|
|
|
|
|
i = 0 |
|
while i + 1 < len(res): |
|
if res[i][1] == res[i + 1][1]: |
|
res[i][0] += res[i + 1][0] |
|
res.pop(i + 1) |
|
else: |
|
i += 1 |
|
|
|
return res |
|
|
|
if __name__ == "__main__": |
|
import doctest |
|
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE) |
|
else: |
|
import torch |
|
|