---
base_model: sentence-transformers/paraphrase-xlm-r-multilingual-v1
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:38739
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: '''Turks ve Caicos Adaları''ndaki Afrikalıların nüfusu nedir?'
sentences:
- "CREATE TABLEethnicGroup (\n Country TEXT,\n Name TEXT PRIMARY KEY,\n \
\ Percentage REAL,\n FOREIGN KEY (Country) REFERENCES country(None)\n);"
- "CREATE TABLEPatient (\n ID INTEGER PRIMARY KEY,\n SEX TEXT,\n Birthday\
\ DATE,\n Description DATE,\n First Date DATE,\n Admission TEXT,\n \
\ Diagnosis TEXT\n);"
- "CREATE TABLEwrites (\n paperId INTEGER PRIMARY KEY,\n authorId INTEGER,\n\
\ FOREIGN KEY (authorId) REFERENCES author(authorId),\n FOREIGN KEY (paperId)\
\ REFERENCES paper(paperId)\n);"
- source_sentence: Teksas'ın başkenti nedir
sentences:
- "CREATE TABLEprofessor (\n EMP_NUM INT,\n DEPT_CODE varchar(10),\n PROF_OFFICE\
\ varchar(50),\n PROF_EXTENSION varchar(4),\n PROF_HIGH_DEGREE varchar(5),\n\
\ FOREIGN KEY (DEPT_CODE) REFERENCES DEPARTMENT(DEPT_CODE),\n FOREIGN KEY\
\ (EMP_NUM) REFERENCES EMPLOYEE(EMP_NUM)\n);"
- "CREATE TABLEBusiness_Hours (\n business_id INTEGER PRIMARY KEY,\n day_id\
\ INTEGER,\n opening_time TEXT,\n closing_time TEXT,\n FOREIGN KEY (day_id)\
\ REFERENCES Days(None),\n FOREIGN KEY (business_id) REFERENCES Business(None)\n\
);"
- "CREATE TABLEstate (\n state_name TEXT PRIMARY KEY,\n population INTEGER,\n\
\ area double,\n country_name varchar(3),\n capital TEXT,\n density\
\ double\n);"
- source_sentence: '''Mad Max: Fury Road'' filminde çalışan 10 ekibin işlerinin yanı
sıra listeleyin.'
sentences:
- "CREATE TABLEmovie (\n movie_id INTEGER PRIMARY KEY,\n title TEXT,\n \
\ budget INTEGER,\n homepage TEXT,\n overview TEXT,\n popularity REAL,\n\
\ release_date DATE,\n revenue INTEGER,\n runtime INTEGER,\n movie_status\
\ TEXT,\n tagline TEXT,\n vote_average REAL,\n vote_count INTEGER\n);"
- "CREATE TABLEstudent (\n STU_NUM INT PRIMARY KEY,\n STU_LNAME varchar(15),\n\
\ STU_FNAME varchar(15),\n STU_INIT varchar(1),\n STU_DOB datetime,\n\
\ STU_HRS INT,\n STU_CLASS varchar(2),\n STU_GPA float(8),\n STU_TRANSFER\
\ numeric,\n DEPT_CODE varchar(18),\n STU_PHONE varchar(4),\n PROF_NUM\
\ INT,\n FOREIGN KEY (DEPT_CODE) REFERENCES DEPARTMENT(DEPT_CODE)\n);"
- "CREATE TABLEFinancial_transactions (\n transaction_id INTEGER,\n account_id\
\ INTEGER,\n invoice_number INTEGER,\n transaction_type VARCHAR(15),\n \
\ transaction_date DATETIME,\n transaction_amount DECIMAL(19,4),\n transaction_comment\
\ VARCHAR(255),\n other_transaction_details VARCHAR(255),\n FOREIGN KEY\
\ (account_id) REFERENCES Accounts(account_id),\n FOREIGN KEY (invoice_number)\
\ REFERENCES Invoices(invoice_number)\n);"
- source_sentence: Tüm müşterilerin ortalama yaşının %80'inden daha büyük yaştaki
müşterilerin gelirlerini ve sakin sayısını listeler misiniz?
sentences:
- "CREATE TABLECustomers (\n ID INTEGER PRIMARY KEY,\n SEX TEXT,\n MARITAL_STATUS\
\ TEXT,\n GEOID INTEGER,\n EDUCATIONNUM INTEGER,\n OCCUPATION TEXT,\n\
\ age INTEGER,\n FOREIGN KEY (GEOID) REFERENCES Demog(None)\n);"
- "CREATE TABLEauthors (\n authID INTEGER PRIMARY KEY,\n lname TEXT,\n \
\ fname TEXT\n);"
- "CREATE TABLEcoaches (\n coachID TEXT PRIMARY KEY,\n year INTEGER,\n \
\ tmID TEXT,\n lgID TEXT,\n stint INTEGER,\n won INTEGER,\n lost INTEGER,\n\
\ post_wins INTEGER,\n post_losses INTEGER,\n FOREIGN KEY (tmID) REFERENCES\
\ teams(tmID),\n FOREIGN KEY (year) REFERENCES teams(year)\n);"
- source_sentence: Eleanor Hunt'a ait kaç tane kiralama kimliği var?
sentences:
- "CREATE TABLEsinger (\n Singer_ID INT PRIMARY KEY,\n Name TEXT,\n Country\
\ TEXT,\n Song_Name TEXT,\n Song_release_year TEXT,\n Age INT,\n Is_male\
\ bool\n);"
- "CREATE TABLEdistrict (\n District_ID INT PRIMARY KEY,\n District_name TEXT,\n\
\ Headquartered_City TEXT,\n City_Population REAL,\n City_Area REAL\n\
);"
- "CREATE TABLEcustomer (\n customer_id INTEGER PRIMARY KEY,\n store_id INTEGER,\n\
\ first_name TEXT,\n last_name TEXT,\n email TEXT,\n address_id INTEGER,\n\
\ active INTEGER,\n create_date DATETIME,\n last_update DATETIME,\n \
\ FOREIGN KEY (address_id) REFERENCES address(None),\n FOREIGN KEY (store_id)\
\ REFERENCES store(None)\n);"
---
# SentenceTransformer based on sentence-transformers/paraphrase-xlm-r-multilingual-v1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-xlm-r-multilingual-v1](https://huggingface.co/sentence-transformers/paraphrase-xlm-r-multilingual-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-xlm-r-multilingual-v1](https://huggingface.co/sentence-transformers/paraphrase-xlm-r-multilingual-v1)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("nypgd/fine-tuned-sentence-transformer_last")
# Run inference
sentences = [
"Eleanor Hunt'a ait kaç tane kiralama kimliği var?",
'CREATE TABLEcustomer (\n customer_id INTEGER PRIMARY KEY,\n store_id INTEGER,\n first_name TEXT,\n last_name TEXT,\n email TEXT,\n address_id INTEGER,\n active INTEGER,\n create_date DATETIME,\n last_update DATETIME,\n FOREIGN KEY (address_id) REFERENCES address(None),\n FOREIGN KEY (store_id) REFERENCES store(None)\n);',
'CREATE TABLEdistrict (\n District_ID INT PRIMARY KEY,\n District_name TEXT,\n Headquartered_City TEXT,\n City_Population REAL,\n City_Area REAL\n);',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 38,739 training samples
* Columns: sentence_0
and sentence_1
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details |
en büyük alana sahip eyaleti belirtin
| CREATE TABLEstate (
state_name TEXT PRIMARY KEY,
population INTEGER,
area double,
country_name varchar(3),
capital TEXT,
density double
);
|
| Law & Order'ın hangi bölümleri Primetime Emmy Ödülleri'ne aday gösterildi?
| CREATE TABLEAward (
award_id INTEGER PRIMARY KEY,
organization TEXT,
year INTEGER,
award_category TEXT,
award TEXT,
series TEXT,
episode_id TEXT,
person_id TEXT,
role TEXT,
result TEXT,
FOREIGN KEY (person_id) REFERENCES Person(person_id),
FOREIGN KEY (episode_id) REFERENCES Episode(episode_id)
);
|
| Albümü "Universal Music Group" etiketi altında yer alan tüm şarkıların isimleri nelerdir?
| CREATE TABLEtracklists (
AlbumId INTEGER PRIMARY KEY,
Position INTEGER,
SongId INTEGER,
FOREIGN KEY (AlbumId) REFERENCES Albums(AId),
FOREIGN KEY (SongId) REFERENCES Songs(SongId)
);
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters