oanaflores commited on
Commit
ecfd4b4
·
1 Parent(s): d378d1b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -12
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.9322314049586777
28
  - name: Recall
29
  type: recall
30
- value: 0.9491753618310333
31
  - name: F1
32
  type: f1
33
- value: 0.9406270847231488
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9861511744275033
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0631
47
- - Precision: 0.9322
48
- - Recall: 0.9492
49
- - F1: 0.9406
50
- - Accuracy: 0.9862
51
 
52
  ## Model description
53
 
@@ -78,9 +78,9 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | 0.0889 | 1.0 | 1756 | 0.0640 | 0.9239 | 0.9355 | 0.9297 | 0.9831 |
82
- | 0.0361 | 2.0 | 3512 | 0.0649 | 0.9251 | 0.9461 | 0.9355 | 0.9849 |
83
- | 0.0185 | 3.0 | 5268 | 0.0631 | 0.9322 | 0.9492 | 0.9406 | 0.9862 |
84
 
85
 
86
  ### Framework versions
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.9331789612967251
28
  - name: Recall
29
  type: recall
30
+ value: 0.9495119488387749
31
  - name: F1
32
  type: f1
33
+ value: 0.9412746079412746
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9867545770294931
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.0584
47
+ - Precision: 0.9332
48
+ - Recall: 0.9495
49
+ - F1: 0.9413
50
+ - Accuracy: 0.9868
51
 
52
  ## Model description
53
 
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0861 | 1.0 | 1756 | 0.0718 | 0.9142 | 0.9303 | 0.9222 | 0.9814 |
82
+ | 0.0341 | 2.0 | 3512 | 0.0592 | 0.9359 | 0.9504 | 0.9431 | 0.9867 |
83
+ | 0.018 | 3.0 | 5268 | 0.0584 | 0.9332 | 0.9495 | 0.9413 | 0.9868 |
84
 
85
 
86
  ### Framework versions