--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: distilbert-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9375 --- # distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1279 - Accuracy: 0.9375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 0.1360 | 0.942 | | No log | 2.0 | 250 | 0.1279 | 0.9375 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3