oceansweep commited on
Commit
8d05ce7
1 Parent(s): 8b81303

Upload 11 files

Browse files
.ipynb_checkpoints/added_tokens-checkpoint.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<sep>": 32002,
3
+ "<|end_of_turn|>": 32000,
4
+ "<|pad_0|>": 32001
5
+ }
.ipynb_checkpoints/config-checkpoint.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "berkeley-nest/Starling-LM-7B-alpha",
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 32000,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 8192,
14
+ "model_type": "mixtral",
15
+ "num_attention_heads": 32,
16
+ "num_experts_per_tok": 1,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 8,
19
+ "num_local_experts": 4,
20
+ "output_router_logits": false,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_theta": 10000.0,
23
+ "router_aux_loss_coef": 0.001,
24
+ "sliding_window": null,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.39.3",
28
+ "use_cache": true,
29
+ "vocab_size": 32002
30
+ }
.ipynb_checkpoints/mergekit_moe_config-checkpoint.yml ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: chihoonlee10/T3Q-EN-DPO-Mistral-7B
2
+ gate_mode: cheap_embed # one of "hidden", "cheap_embed", or "random"
3
+ dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
4
+ ## (optional)
5
+ experts_per_token: 2
6
+ experts:
7
+ - source_model: Kukedlc/Jupiter-k-7B-slerp
8
+ positive_prompts:
9
+ - "This puzzle involves identifying a repeating pattern. Can you analyze the examples and complete the missing element?"
10
+ - "These grids seem to follow a specific visual pattern. Can you analyze the examples and apply the pattern to solve the puzzle?"
11
+ - "Look for a consistent rule in how the elements are arranged. Can you use that rule to predict the missing element?"
12
+ - "This task requires applying logical deduction. Can you analyze the information and choose the answer that follows logically?"
13
+ - "Reason through the cause-and-effect relationships in the examples. Can you use that logic to solve the puzzle?"
14
+ - "Analyze the relationship between the input and output in the examples. Can you apply that relationship to solve the new problem?"
15
+ - "This puzzle requires modifying the image based on a specific rule. Can you analyze the changes in the examples and apply them to solve the puzzle?"
16
+ - "Focus on the visual changes demonstrated in the training examples. Can you replicate those changes to solve the new problem?"
17
+ - "This task involves manipulating shapes or colors based on a pattern. Can you analyze the examples and apply the pattern to the new image?"
18
+ - "These puzzles involve manipulating numbers according to a specific rule. Can you analyze the pattern and solve the missing number?"
19
+ - "Focus on the mathematical operations demonstrated in the examples. Can you apply those operations to solve the new equation?"
20
+ - "Look for relationships between the numbers in the training examples. Can you use that relationship to predict the missing number?"
21
+ - "This task requires understanding the arrangement of objects in space. Can you analyze the movement patterns in the examples and predict the next step?"
22
+ - "Focus on the spatial relationships between elements in the grids. Can you replicate those relationships to solve the new puzzle?"
23
+ - "Analyze the rotation, reflection, or translation demonstrated in the examples. Can you apply that manipulation to solve the new problem?"
24
+ - source_model: InferenceIllusionist/Excalibur-7b-DPO
25
+ positive_prompts:
26
+ - "This passage contains factual information. Can you summarize the key details about [topic]?"
27
+ - "Based on the information provided, what can you tell me about [entity]?"
28
+ - "Is the following statement true or false according to the passage: [statement]?"
29
+ - "What caused [event] to happen in the passage?"
30
+ - "Why did [character] take the action of [action]?"
31
+ - "If [condition] were true, what would likely happen next?"
32
+ - "How are [entity A] and [entity B] similar/different?"
33
+ - "Which option, [A] or [B], is more likely based on the information provided?"
34
+ - "Rank the following options ([list]) based on [criteria] according to the passage."
35
+ - "Does the following statement logically follow from the information provided: [statement]?"
36
+ - "Identify any inconsistencies or contradictions in the passage."
37
+ - "Can you draw a logical conclusion based on the evidence presented?"
38
+ - "What can be inferred about [concept] based on the information provided?"
39
+ - "What is the underlying meaning or implication of the author's statement?"
40
+ - "Can you fill in the blanks with the most likely word(s) based on the context?"
41
+ - "What are some potential consequences of [event]?"
42
+ - "Can you generate creative solutions to the problem presented in the passage?"
43
+ - "Based on the information provided, propose a course of action for [character]."
44
+ - source_model: yam-peleg/Experiment21-7B
45
+ positive_prompts:
46
+ - "Be truthful and objective in your response. Avoid speculation or making claims that cannot be verified."
47
+ - "Focus on providing factual information based on the evidence presented in the source material."
48
+ - "If you are unsure about something, it's okay to say 'I don't know' or 'I can't find information to support that claim'."
49
+ - "Be aware of potential biases in the source material and strive to present a neutral perspective."
50
+ - "If a source seems biased, identify the bias and consider alternative viewpoints."
51
+ - "Avoid using language that promotes stereotypes or prejudices."
52
+ - "Cite your sources when referencing information from external materials."
53
+ - "Acknowledge the limitations of your knowledge and the potential for different interpretations."
54
+ - "Be transparent about your confidence level in your answer."
55
+ - "Explain your reasoning process and how you arrived at your answer."
56
+ - "Provide evidence to support your claims whenever possible."
57
+ - "If there are multiple perspectives on an issue, present them fairly and objectively."
58
+ - source_model: senseable/WestLake-7B-v2
59
+ positive_prompts:
60
+ - "This sentence contains a pronoun ('he' or 'she'). Pay close attention to the context to determine who the pronoun refers to."
61
+ - "Identify the two potential referents for the pronoun ('he' or 'she') in this sentence. Analyze the context to choose the correct one."
62
+ - "This scenario describes two individuals. Use the information provided to understand who the pronoun refers to in the sentence."
63
+ - "Focus on the actions described in the sentence and the roles of the individuals involved. This will help determine the pronoun referent."
64
+ - "Analyze the relationship between the individuals mentioned in the sentence. The pronoun likely refers to the one performing the action."
65
+ - "Consider the animacy of the potential referents. Pronouns typically refer to animate beings (people or animals) in the context."
66
+ - "Don't rely solely on the pronoun itself. Utilize the entire sentence and surrounding context to understand its meaning."
67
+ - "Look for clues in the sentence that indicate who the pronoun refers to. This could include gender, possession, or actions described."
68
+ - "Imagine the scenario described in the sentence. Visualizing the situation can help you identify the intended referent."
69
+ - "Evaluate the plausibility of each potential referent for the pronoun. Choose the one that makes the most logical sense in the context."
70
+ - "Think about the actions described and the roles of the individuals involved. Does it make more sense for one or the other to perform the action?"
71
+ - "Consider the world knowledge you possess. Does the sentence describe a situation where one referent is more likely than the other?"
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<sep>": 32002,
3
+ "<|end_of_turn|>": 32000,
4
+ "<|pad_0|>": 32001
5
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "chihoonlee10/T3Q-EN-DPO-Mistral-7B",
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mixtral",
15
+ "num_attention_heads": 32,
16
+ "num_experts_per_tok": 2,
17
+ "num_hidden_layers": 32,
18
+ "num_key_value_heads": 8,
19
+ "num_local_experts": 4,
20
+ "output_router_logits": false,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_theta": 10000.0,
23
+ "router_aux_loss_coef": 0.001,
24
+ "sliding_window": null,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.39.3",
28
+ "use_cache": true,
29
+ "vocab_size": 32000
30
+ }
mergekit_moe_config.yml ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: chihoonlee10/T3Q-EN-DPO-Mistral-7B
2
+ gate_mode: hidden # one of "hidden", "cheap_embed", or "random"
3
+ dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
4
+ ## (optional)
5
+ experts_per_token: 2
6
+ experts:
7
+ - source_model: Kukedlc/Jupiter-k-7B-slerp
8
+ positive_prompts:
9
+ - "This puzzle involves identifying a repeating pattern. Can you analyze the examples and complete the missing element?"
10
+ - "These grids seem to follow a specific visual pattern. Can you analyze the examples and apply the pattern to solve the puzzle?"
11
+ - "Look for a consistent rule in how the elements are arranged. Can you use that rule to predict the missing element?"
12
+ - "This task requires applying logical deduction. Can you analyze the information and choose the answer that follows logically?"
13
+ - "Reason through the cause-and-effect relationships in the examples. Can you use that logic to solve the puzzle?"
14
+ - "Analyze the relationship between the input and output in the examples. Can you apply that relationship to solve the new problem?"
15
+ - "This puzzle requires modifying the image based on a specific rule. Can you analyze the changes in the examples and apply them to solve the puzzle?"
16
+ - "Focus on the visual changes demonstrated in the training examples. Can you replicate those changes to solve the new problem?"
17
+ - "This task involves manipulating shapes or colors based on a pattern. Can you analyze the examples and apply the pattern to the new image?"
18
+ - "These puzzles involve manipulating numbers according to a specific rule. Can you analyze the pattern and solve the missing number?"
19
+ - "Focus on the mathematical operations demonstrated in the examples. Can you apply those operations to solve the new equation?"
20
+ - "Look for relationships between the numbers in the training examples. Can you use that relationship to predict the missing number?"
21
+ - "This task requires understanding the arrangement of objects in space. Can you analyze the movement patterns in the examples and predict the next step?"
22
+ - "Focus on the spatial relationships between elements in the grids. Can you replicate those relationships to solve the new puzzle?"
23
+ - "Analyze the rotation, reflection, or translation demonstrated in the examples. Can you apply that manipulation to solve the new problem?"
24
+ - source_model: InferenceIllusionist/Excalibur-7b-DPO
25
+ positive_prompts:
26
+ - "This passage contains factual information. Can you summarize the key details about [topic]?"
27
+ - "Based on the information provided, what can you tell me about [entity]?"
28
+ - "Is the following statement true or false according to the passage: [statement]?"
29
+ - "What caused [event] to happen in the passage?"
30
+ - "Why did [character] take the action of [action]?"
31
+ - "If [condition] were true, what would likely happen next?"
32
+ - "How are [entity A] and [entity B] similar/different?"
33
+ - "Which option, [A] or [B], is more likely based on the information provided?"
34
+ - "Rank the following options ([list]) based on [criteria] according to the passage."
35
+ - "Does the following statement logically follow from the information provided: [statement]?"
36
+ - "Identify any inconsistencies or contradictions in the passage."
37
+ - "Can you draw a logical conclusion based on the evidence presented?"
38
+ - "What can be inferred about [concept] based on the information provided?"
39
+ - "What is the underlying meaning or implication of the author's statement?"
40
+ - "Can you fill in the blanks with the most likely word(s) based on the context?"
41
+ - "What are some potential consequences of [event]?"
42
+ - "Can you generate creative solutions to the problem presented in the passage?"
43
+ - "Based on the information provided, propose a course of action for [character]."
44
+ - source_model: yam-peleg/Experiment21-7B
45
+ positive_prompts:
46
+ - "Be truthful and objective in your response. Avoid speculation or making claims that cannot be verified."
47
+ - "Focus on providing factual information based on the evidence presented in the source material."
48
+ - "If you are unsure about something, it's okay to say 'I don't know' or 'I can't find information to support that claim'."
49
+ - "Be aware of potential biases in the source material and strive to present a neutral perspective."
50
+ - "If a source seems biased, identify the bias and consider alternative viewpoints."
51
+ - "Avoid using language that promotes stereotypes or prejudices."
52
+ - "Cite your sources when referencing information from external materials."
53
+ - "Acknowledge the limitations of your knowledge and the potential for different interpretations."
54
+ - "Be transparent about your confidence level in your answer."
55
+ - "Explain your reasoning process and how you arrived at your answer."
56
+ - "Provide evidence to support your claims whenever possible."
57
+ - "If there are multiple perspectives on an issue, present them fairly and objectively."
58
+ - source_model: senseable/WestLake-7B-v2
59
+ positive_prompts:
60
+ - "This sentence contains a pronoun ('he' or 'she'). Pay close attention to the context to determine who the pronoun refers to."
61
+ - "Identify the two potential referents for the pronoun ('he' or 'she') in this sentence. Analyze the context to choose the correct one."
62
+ - "This scenario describes two individuals. Use the information provided to understand who the pronoun refers to in the sentence."
63
+ - "Focus on the actions described in the sentence and the roles of the individuals involved. This will help determine the pronoun referent."
64
+ - "Analyze the relationship between the individuals mentioned in the sentence. The pronoun likely refers to the one performing the action."
65
+ - "Consider the animacy of the potential referents. Pronouns typically refer to animate beings (people or animals) in the context."
66
+ - "Don't rely solely on the pronoun itself. Utilize the entire sentence and surrounding context to understand its meaning."
67
+ - "Look for clues in the sentence that indicate who the pronoun refers to. This could include gender, possession, or actions described."
68
+ - "Imagine the scenario described in the sentence. Visualizing the situation can help you identify the intended referent."
69
+ - "Evaluate the plausibility of each potential referent for the pronoun. Choose the one that makes the most logical sense in the context."
70
+ - "Think about the actions described and the roles of the individuals involved. Does it make more sense for one or the other to perform the action?"
71
+ - "Consider the world knowledge you possess. Does the sentence describe a situation where one referent is more likely than the other?"
model.safetensors.index.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metadata": {"mergekit_version": "0.0.4.2", "total_size": 48307380224}, "weight_map": {"model.embed_tokens.weight": "model-00001-of-00005.safetensors", "model.norm.weight": "model-00001-of-00005.safetensors", "lm_head.weight": "model-00001-of-00005.safetensors", "model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors", "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors", "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors", "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors", "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00005.safetensors", "model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors", "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors", "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors", "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors", "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00005.safetensors", "model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors", "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors", "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors", "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors", "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00005.safetensors", "model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors", "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors", "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors", "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors", "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00005.safetensors", "model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors", "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors", "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors", "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors", "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00005.safetensors", "model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors", "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors", "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors", "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors", "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00005.safetensors", "model.layers.6.input_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors", "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors", "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors", "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors", "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00005.safetensors", "model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors", "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors", "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors", "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors", "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00005.safetensors", "model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors", "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors", "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors", "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors", "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00005.safetensors", "model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors", "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors", "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors", "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors", "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00005.safetensors", "model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors", "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors", "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors", "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors", "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00005.safetensors", "model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors", "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors", "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors", "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors", "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00005.safetensors", "model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors", "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors", "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors", "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors", "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00005.safetensors", "model.layers.13.input_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00005.safetensors", "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00005.safetensors", "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00005.safetensors", "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00005.safetensors", "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00005.safetensors", "model.layers.14.input_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00005.safetensors", "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00005.safetensors", "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00005.safetensors", "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00005.safetensors", "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00005.safetensors", "model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00005.safetensors", "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00005.safetensors", "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00005.safetensors", "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00005.safetensors", "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00005.safetensors", "model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors", "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors", "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors", "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors", "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00005.safetensors", "model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors", "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors", "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors", "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors", "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00005.safetensors", "model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors", "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors", "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors", "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors", "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00005.safetensors", "model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors", "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors", "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors", "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors", "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00005.safetensors", "model.layers.20.input_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00005.safetensors", "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00005.safetensors", "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00005.safetensors", "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00005.safetensors", "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00005.safetensors", "model.layers.21.input_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00005.safetensors", "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00005.safetensors", "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00005.safetensors", "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00005.safetensors", "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00005.safetensors", "model.layers.22.input_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00005.safetensors", "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00005.safetensors", "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00005.safetensors", "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00005.safetensors", "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00005.safetensors", "model.layers.23.input_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00005.safetensors", "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00005.safetensors", "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00005.safetensors", "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00005.safetensors", "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00005.safetensors", "model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00005.safetensors", "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00005.safetensors", "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00005.safetensors", "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00005.safetensors", "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00005.safetensors", "model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors", "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors", "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors", "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors", "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00005.safetensors", "model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors", "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors", "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors", "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors", "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00005.safetensors", "model.layers.27.input_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.27.self_attn.q_proj.weight": "model-00005-of-00005.safetensors", "model.layers.27.self_attn.k_proj.weight": "model-00005-of-00005.safetensors", "model.layers.27.self_attn.v_proj.weight": "model-00005-of-00005.safetensors", "model.layers.27.self_attn.o_proj.weight": "model-00005-of-00005.safetensors", "model.layers.27.post_attention_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00005.safetensors", "model.layers.28.input_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.28.self_attn.q_proj.weight": "model-00005-of-00005.safetensors", "model.layers.28.self_attn.k_proj.weight": "model-00005-of-00005.safetensors", "model.layers.28.self_attn.v_proj.weight": "model-00005-of-00005.safetensors", "model.layers.28.self_attn.o_proj.weight": "model-00005-of-00005.safetensors", "model.layers.28.post_attention_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00005.safetensors", "model.layers.29.input_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.29.self_attn.q_proj.weight": "model-00005-of-00005.safetensors", "model.layers.29.self_attn.k_proj.weight": "model-00005-of-00005.safetensors", "model.layers.29.self_attn.v_proj.weight": "model-00005-of-00005.safetensors", "model.layers.29.self_attn.o_proj.weight": "model-00005-of-00005.safetensors", "model.layers.29.post_attention_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00005.safetensors", "model.layers.30.input_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.30.self_attn.q_proj.weight": "model-00005-of-00005.safetensors", "model.layers.30.self_attn.k_proj.weight": "model-00005-of-00005.safetensors", "model.layers.30.self_attn.v_proj.weight": "model-00005-of-00005.safetensors", "model.layers.30.self_attn.o_proj.weight": "model-00005-of-00005.safetensors", "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00005.safetensors", "model.layers.31.input_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00005.safetensors", "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00005.safetensors", "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00005.safetensors", "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00005.safetensors", "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00005.safetensors", "model.layers.0.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.1.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.2.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.3.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.4.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.5.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.6.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.7.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.8.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.9.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.10.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.11.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.12.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.13.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.14.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.15.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.16.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.17.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.18.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.19.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.20.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.21.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.22.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.23.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.24.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.25.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors"}}
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 32768,
36
+ "pad_token": "<s>",
37
+ "padding_side": "left",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false
43
+ }