oceansweep
commited on
Commit
•
8d05ce7
1
Parent(s):
8b81303
Upload 11 files
Browse files- .ipynb_checkpoints/added_tokens-checkpoint.json +5 -0
- .ipynb_checkpoints/config-checkpoint.json +30 -0
- .ipynb_checkpoints/mergekit_moe_config-checkpoint.yml +71 -0
- added_tokens.json +5 -0
- config.json +30 -0
- mergekit_moe_config.yml +71 -0
- model.safetensors.index.json +1 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
.ipynb_checkpoints/added_tokens-checkpoint.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<sep>": 32002,
|
3 |
+
"<|end_of_turn|>": 32000,
|
4 |
+
"<|pad_0|>": 32001
|
5 |
+
}
|
.ipynb_checkpoints/config-checkpoint.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "berkeley-nest/Starling-LM-7B-alpha",
|
3 |
+
"architectures": [
|
4 |
+
"MixtralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 32000,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 8192,
|
14 |
+
"model_type": "mixtral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_experts_per_tok": 1,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"num_local_experts": 4,
|
20 |
+
"output_router_logits": false,
|
21 |
+
"rms_norm_eps": 1e-05,
|
22 |
+
"rope_theta": 10000.0,
|
23 |
+
"router_aux_loss_coef": 0.001,
|
24 |
+
"sliding_window": null,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.39.3",
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 32002
|
30 |
+
}
|
.ipynb_checkpoints/mergekit_moe_config-checkpoint.yml
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: chihoonlee10/T3Q-EN-DPO-Mistral-7B
|
2 |
+
gate_mode: cheap_embed # one of "hidden", "cheap_embed", or "random"
|
3 |
+
dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
|
4 |
+
## (optional)
|
5 |
+
experts_per_token: 2
|
6 |
+
experts:
|
7 |
+
- source_model: Kukedlc/Jupiter-k-7B-slerp
|
8 |
+
positive_prompts:
|
9 |
+
- "This puzzle involves identifying a repeating pattern. Can you analyze the examples and complete the missing element?"
|
10 |
+
- "These grids seem to follow a specific visual pattern. Can you analyze the examples and apply the pattern to solve the puzzle?"
|
11 |
+
- "Look for a consistent rule in how the elements are arranged. Can you use that rule to predict the missing element?"
|
12 |
+
- "This task requires applying logical deduction. Can you analyze the information and choose the answer that follows logically?"
|
13 |
+
- "Reason through the cause-and-effect relationships in the examples. Can you use that logic to solve the puzzle?"
|
14 |
+
- "Analyze the relationship between the input and output in the examples. Can you apply that relationship to solve the new problem?"
|
15 |
+
- "This puzzle requires modifying the image based on a specific rule. Can you analyze the changes in the examples and apply them to solve the puzzle?"
|
16 |
+
- "Focus on the visual changes demonstrated in the training examples. Can you replicate those changes to solve the new problem?"
|
17 |
+
- "This task involves manipulating shapes or colors based on a pattern. Can you analyze the examples and apply the pattern to the new image?"
|
18 |
+
- "These puzzles involve manipulating numbers according to a specific rule. Can you analyze the pattern and solve the missing number?"
|
19 |
+
- "Focus on the mathematical operations demonstrated in the examples. Can you apply those operations to solve the new equation?"
|
20 |
+
- "Look for relationships between the numbers in the training examples. Can you use that relationship to predict the missing number?"
|
21 |
+
- "This task requires understanding the arrangement of objects in space. Can you analyze the movement patterns in the examples and predict the next step?"
|
22 |
+
- "Focus on the spatial relationships between elements in the grids. Can you replicate those relationships to solve the new puzzle?"
|
23 |
+
- "Analyze the rotation, reflection, or translation demonstrated in the examples. Can you apply that manipulation to solve the new problem?"
|
24 |
+
- source_model: InferenceIllusionist/Excalibur-7b-DPO
|
25 |
+
positive_prompts:
|
26 |
+
- "This passage contains factual information. Can you summarize the key details about [topic]?"
|
27 |
+
- "Based on the information provided, what can you tell me about [entity]?"
|
28 |
+
- "Is the following statement true or false according to the passage: [statement]?"
|
29 |
+
- "What caused [event] to happen in the passage?"
|
30 |
+
- "Why did [character] take the action of [action]?"
|
31 |
+
- "If [condition] were true, what would likely happen next?"
|
32 |
+
- "How are [entity A] and [entity B] similar/different?"
|
33 |
+
- "Which option, [A] or [B], is more likely based on the information provided?"
|
34 |
+
- "Rank the following options ([list]) based on [criteria] according to the passage."
|
35 |
+
- "Does the following statement logically follow from the information provided: [statement]?"
|
36 |
+
- "Identify any inconsistencies or contradictions in the passage."
|
37 |
+
- "Can you draw a logical conclusion based on the evidence presented?"
|
38 |
+
- "What can be inferred about [concept] based on the information provided?"
|
39 |
+
- "What is the underlying meaning or implication of the author's statement?"
|
40 |
+
- "Can you fill in the blanks with the most likely word(s) based on the context?"
|
41 |
+
- "What are some potential consequences of [event]?"
|
42 |
+
- "Can you generate creative solutions to the problem presented in the passage?"
|
43 |
+
- "Based on the information provided, propose a course of action for [character]."
|
44 |
+
- source_model: yam-peleg/Experiment21-7B
|
45 |
+
positive_prompts:
|
46 |
+
- "Be truthful and objective in your response. Avoid speculation or making claims that cannot be verified."
|
47 |
+
- "Focus on providing factual information based on the evidence presented in the source material."
|
48 |
+
- "If you are unsure about something, it's okay to say 'I don't know' or 'I can't find information to support that claim'."
|
49 |
+
- "Be aware of potential biases in the source material and strive to present a neutral perspective."
|
50 |
+
- "If a source seems biased, identify the bias and consider alternative viewpoints."
|
51 |
+
- "Avoid using language that promotes stereotypes or prejudices."
|
52 |
+
- "Cite your sources when referencing information from external materials."
|
53 |
+
- "Acknowledge the limitations of your knowledge and the potential for different interpretations."
|
54 |
+
- "Be transparent about your confidence level in your answer."
|
55 |
+
- "Explain your reasoning process and how you arrived at your answer."
|
56 |
+
- "Provide evidence to support your claims whenever possible."
|
57 |
+
- "If there are multiple perspectives on an issue, present them fairly and objectively."
|
58 |
+
- source_model: senseable/WestLake-7B-v2
|
59 |
+
positive_prompts:
|
60 |
+
- "This sentence contains a pronoun ('he' or 'she'). Pay close attention to the context to determine who the pronoun refers to."
|
61 |
+
- "Identify the two potential referents for the pronoun ('he' or 'she') in this sentence. Analyze the context to choose the correct one."
|
62 |
+
- "This scenario describes two individuals. Use the information provided to understand who the pronoun refers to in the sentence."
|
63 |
+
- "Focus on the actions described in the sentence and the roles of the individuals involved. This will help determine the pronoun referent."
|
64 |
+
- "Analyze the relationship between the individuals mentioned in the sentence. The pronoun likely refers to the one performing the action."
|
65 |
+
- "Consider the animacy of the potential referents. Pronouns typically refer to animate beings (people or animals) in the context."
|
66 |
+
- "Don't rely solely on the pronoun itself. Utilize the entire sentence and surrounding context to understand its meaning."
|
67 |
+
- "Look for clues in the sentence that indicate who the pronoun refers to. This could include gender, possession, or actions described."
|
68 |
+
- "Imagine the scenario described in the sentence. Visualizing the situation can help you identify the intended referent."
|
69 |
+
- "Evaluate the plausibility of each potential referent for the pronoun. Choose the one that makes the most logical sense in the context."
|
70 |
+
- "Think about the actions described and the roles of the individuals involved. Does it make more sense for one or the other to perform the action?"
|
71 |
+
- "Consider the world knowledge you possess. Does the sentence describe a situation where one referent is more likely than the other?"
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<sep>": 32002,
|
3 |
+
"<|end_of_turn|>": 32000,
|
4 |
+
"<|pad_0|>": 32001
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "chihoonlee10/T3Q-EN-DPO-Mistral-7B",
|
3 |
+
"architectures": [
|
4 |
+
"MixtralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mixtral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_experts_per_tok": 2,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"num_local_experts": 4,
|
20 |
+
"output_router_logits": false,
|
21 |
+
"rms_norm_eps": 1e-05,
|
22 |
+
"rope_theta": 10000.0,
|
23 |
+
"router_aux_loss_coef": 0.001,
|
24 |
+
"sliding_window": null,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.39.3",
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 32000
|
30 |
+
}
|
mergekit_moe_config.yml
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: chihoonlee10/T3Q-EN-DPO-Mistral-7B
|
2 |
+
gate_mode: hidden # one of "hidden", "cheap_embed", or "random"
|
3 |
+
dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
|
4 |
+
## (optional)
|
5 |
+
experts_per_token: 2
|
6 |
+
experts:
|
7 |
+
- source_model: Kukedlc/Jupiter-k-7B-slerp
|
8 |
+
positive_prompts:
|
9 |
+
- "This puzzle involves identifying a repeating pattern. Can you analyze the examples and complete the missing element?"
|
10 |
+
- "These grids seem to follow a specific visual pattern. Can you analyze the examples and apply the pattern to solve the puzzle?"
|
11 |
+
- "Look for a consistent rule in how the elements are arranged. Can you use that rule to predict the missing element?"
|
12 |
+
- "This task requires applying logical deduction. Can you analyze the information and choose the answer that follows logically?"
|
13 |
+
- "Reason through the cause-and-effect relationships in the examples. Can you use that logic to solve the puzzle?"
|
14 |
+
- "Analyze the relationship between the input and output in the examples. Can you apply that relationship to solve the new problem?"
|
15 |
+
- "This puzzle requires modifying the image based on a specific rule. Can you analyze the changes in the examples and apply them to solve the puzzle?"
|
16 |
+
- "Focus on the visual changes demonstrated in the training examples. Can you replicate those changes to solve the new problem?"
|
17 |
+
- "This task involves manipulating shapes or colors based on a pattern. Can you analyze the examples and apply the pattern to the new image?"
|
18 |
+
- "These puzzles involve manipulating numbers according to a specific rule. Can you analyze the pattern and solve the missing number?"
|
19 |
+
- "Focus on the mathematical operations demonstrated in the examples. Can you apply those operations to solve the new equation?"
|
20 |
+
- "Look for relationships between the numbers in the training examples. Can you use that relationship to predict the missing number?"
|
21 |
+
- "This task requires understanding the arrangement of objects in space. Can you analyze the movement patterns in the examples and predict the next step?"
|
22 |
+
- "Focus on the spatial relationships between elements in the grids. Can you replicate those relationships to solve the new puzzle?"
|
23 |
+
- "Analyze the rotation, reflection, or translation demonstrated in the examples. Can you apply that manipulation to solve the new problem?"
|
24 |
+
- source_model: InferenceIllusionist/Excalibur-7b-DPO
|
25 |
+
positive_prompts:
|
26 |
+
- "This passage contains factual information. Can you summarize the key details about [topic]?"
|
27 |
+
- "Based on the information provided, what can you tell me about [entity]?"
|
28 |
+
- "Is the following statement true or false according to the passage: [statement]?"
|
29 |
+
- "What caused [event] to happen in the passage?"
|
30 |
+
- "Why did [character] take the action of [action]?"
|
31 |
+
- "If [condition] were true, what would likely happen next?"
|
32 |
+
- "How are [entity A] and [entity B] similar/different?"
|
33 |
+
- "Which option, [A] or [B], is more likely based on the information provided?"
|
34 |
+
- "Rank the following options ([list]) based on [criteria] according to the passage."
|
35 |
+
- "Does the following statement logically follow from the information provided: [statement]?"
|
36 |
+
- "Identify any inconsistencies or contradictions in the passage."
|
37 |
+
- "Can you draw a logical conclusion based on the evidence presented?"
|
38 |
+
- "What can be inferred about [concept] based on the information provided?"
|
39 |
+
- "What is the underlying meaning or implication of the author's statement?"
|
40 |
+
- "Can you fill in the blanks with the most likely word(s) based on the context?"
|
41 |
+
- "What are some potential consequences of [event]?"
|
42 |
+
- "Can you generate creative solutions to the problem presented in the passage?"
|
43 |
+
- "Based on the information provided, propose a course of action for [character]."
|
44 |
+
- source_model: yam-peleg/Experiment21-7B
|
45 |
+
positive_prompts:
|
46 |
+
- "Be truthful and objective in your response. Avoid speculation or making claims that cannot be verified."
|
47 |
+
- "Focus on providing factual information based on the evidence presented in the source material."
|
48 |
+
- "If you are unsure about something, it's okay to say 'I don't know' or 'I can't find information to support that claim'."
|
49 |
+
- "Be aware of potential biases in the source material and strive to present a neutral perspective."
|
50 |
+
- "If a source seems biased, identify the bias and consider alternative viewpoints."
|
51 |
+
- "Avoid using language that promotes stereotypes or prejudices."
|
52 |
+
- "Cite your sources when referencing information from external materials."
|
53 |
+
- "Acknowledge the limitations of your knowledge and the potential for different interpretations."
|
54 |
+
- "Be transparent about your confidence level in your answer."
|
55 |
+
- "Explain your reasoning process and how you arrived at your answer."
|
56 |
+
- "Provide evidence to support your claims whenever possible."
|
57 |
+
- "If there are multiple perspectives on an issue, present them fairly and objectively."
|
58 |
+
- source_model: senseable/WestLake-7B-v2
|
59 |
+
positive_prompts:
|
60 |
+
- "This sentence contains a pronoun ('he' or 'she'). Pay close attention to the context to determine who the pronoun refers to."
|
61 |
+
- "Identify the two potential referents for the pronoun ('he' or 'she') in this sentence. Analyze the context to choose the correct one."
|
62 |
+
- "This scenario describes two individuals. Use the information provided to understand who the pronoun refers to in the sentence."
|
63 |
+
- "Focus on the actions described in the sentence and the roles of the individuals involved. This will help determine the pronoun referent."
|
64 |
+
- "Analyze the relationship between the individuals mentioned in the sentence. The pronoun likely refers to the one performing the action."
|
65 |
+
- "Consider the animacy of the potential referents. Pronouns typically refer to animate beings (people or animals) in the context."
|
66 |
+
- "Don't rely solely on the pronoun itself. Utilize the entire sentence and surrounding context to understand its meaning."
|
67 |
+
- "Look for clues in the sentence that indicate who the pronoun refers to. This could include gender, possession, or actions described."
|
68 |
+
- "Imagine the scenario described in the sentence. Visualizing the situation can help you identify the intended referent."
|
69 |
+
- "Evaluate the plausibility of each potential referent for the pronoun. Choose the one that makes the most logical sense in the context."
|
70 |
+
- "Think about the actions described and the roles of the individuals involved. Does it make more sense for one or the other to perform the action?"
|
71 |
+
- "Consider the world knowledge you possess. Does the sentence describe a situation where one referent is more likely than the other?"
|
model.safetensors.index.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"metadata": {"mergekit_version": "0.0.4.2", "total_size": 48307380224}, "weight_map": {"model.embed_tokens.weight": "model-00001-of-00005.safetensors", "model.norm.weight": "model-00001-of-00005.safetensors", "lm_head.weight": "model-00001-of-00005.safetensors", "model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors", "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors", "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors", "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors", "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00005.safetensors", "model.layers.0.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00005.safetensors", "model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors", "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors", "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors", "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors", "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00005.safetensors", "model.layers.1.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00005.safetensors", "model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors", "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors", "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors", "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors", "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00005.safetensors", "model.layers.2.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00005.safetensors", "model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors", "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors", "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors", "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors", "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00005.safetensors", "model.layers.3.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00005.safetensors", "model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors", "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors", "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors", "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors", "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00005.safetensors", "model.layers.4.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00005.safetensors", "model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors", "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors", "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors", "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors", "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00005.safetensors", "model.layers.5.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00005.safetensors", "model.layers.6.input_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors", "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors", "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors", "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors", "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00005.safetensors", "model.layers.6.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00005.safetensors", "model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors", "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors", "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors", "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors", "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00005.safetensors", "model.layers.7.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00005.safetensors", "model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors", "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors", "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors", "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors", "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00005.safetensors", "model.layers.8.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00005.safetensors", "model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors", "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors", "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors", "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors", "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00005.safetensors", "model.layers.9.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00005.safetensors", "model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors", "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors", "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors", "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors", "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00005.safetensors", "model.layers.10.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00005.safetensors", "model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors", "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors", "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors", "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors", "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00005.safetensors", "model.layers.11.block_sparse_moe.experts.3.w2.weight": "model-00002-of-00005.safetensors", "model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors", "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors", "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors", "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors", "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.3.w3.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.2.w1.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.3.w1.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00005.safetensors", "model.layers.12.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00005.safetensors", "model.layers.13.input_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00005.safetensors", "model.layers.13.self_attn.k_proj.weight": "model-00003-of-00005.safetensors", "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00005.safetensors", "model.layers.13.self_attn.o_proj.weight": "model-00003-of-00005.safetensors", "model.layers.13.post_attention_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00005.safetensors", "model.layers.13.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00005.safetensors", "model.layers.14.input_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00005.safetensors", "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00005.safetensors", "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00005.safetensors", "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00005.safetensors", "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00005.safetensors", "model.layers.14.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00005.safetensors", "model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00005.safetensors", "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00005.safetensors", "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00005.safetensors", "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00005.safetensors", "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00005.safetensors", "model.layers.15.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00005.safetensors", "model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors", "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors", "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors", "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors", "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00005.safetensors", "model.layers.16.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00005.safetensors", "model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors", "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors", "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors", "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors", "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00005.safetensors", "model.layers.17.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00005.safetensors", "model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors", "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors", "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors", "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors", "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.3.w1.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00005.safetensors", "model.layers.18.block_sparse_moe.experts.3.w2.weight": "model-00003-of-00005.safetensors", "model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors", "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors", "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors", "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors", "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.2.w3.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.3.w3.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00005.safetensors", "model.layers.19.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00005.safetensors", "model.layers.20.input_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00005.safetensors", "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00005.safetensors", "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00005.safetensors", "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00005.safetensors", "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00005.safetensors", "model.layers.20.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00005.safetensors", "model.layers.21.input_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00005.safetensors", "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00005.safetensors", "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00005.safetensors", "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00005.safetensors", "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00005.safetensors", "model.layers.21.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00005.safetensors", "model.layers.22.input_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00005.safetensors", "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00005.safetensors", "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00005.safetensors", "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00005.safetensors", "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00005.safetensors", "model.layers.22.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00005.safetensors", "model.layers.23.input_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00005.safetensors", "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00005.safetensors", "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00005.safetensors", "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00005.safetensors", "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00005.safetensors", "model.layers.23.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00005.safetensors", "model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00005.safetensors", "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00005.safetensors", "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00005.safetensors", "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00005.safetensors", "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00005.safetensors", "model.layers.24.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00005.safetensors", "model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors", "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors", "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors", "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors", "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.3.w3.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.3.w1.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.0.w2.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.1.w2.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.2.w2.weight": "model-00004-of-00005.safetensors", "model.layers.25.block_sparse_moe.experts.3.w2.weight": "model-00004-of-00005.safetensors", "model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors", "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors", "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors", "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors", "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.0.w3.weight": "model-00004-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.1.w3.weight": "model-00004-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.2.w3.weight": "model-00004-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00005.safetensors", "model.layers.27.input_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.27.self_attn.q_proj.weight": "model-00005-of-00005.safetensors", "model.layers.27.self_attn.k_proj.weight": "model-00005-of-00005.safetensors", "model.layers.27.self_attn.v_proj.weight": "model-00005-of-00005.safetensors", "model.layers.27.self_attn.o_proj.weight": "model-00005-of-00005.safetensors", "model.layers.27.post_attention_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00005.safetensors", "model.layers.28.input_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.28.self_attn.q_proj.weight": "model-00005-of-00005.safetensors", "model.layers.28.self_attn.k_proj.weight": "model-00005-of-00005.safetensors", "model.layers.28.self_attn.v_proj.weight": "model-00005-of-00005.safetensors", "model.layers.28.self_attn.o_proj.weight": "model-00005-of-00005.safetensors", "model.layers.28.post_attention_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00005.safetensors", "model.layers.29.input_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.29.self_attn.q_proj.weight": "model-00005-of-00005.safetensors", "model.layers.29.self_attn.k_proj.weight": "model-00005-of-00005.safetensors", "model.layers.29.self_attn.v_proj.weight": "model-00005-of-00005.safetensors", "model.layers.29.self_attn.o_proj.weight": "model-00005-of-00005.safetensors", "model.layers.29.post_attention_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00005.safetensors", "model.layers.30.input_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.30.self_attn.q_proj.weight": "model-00005-of-00005.safetensors", "model.layers.30.self_attn.k_proj.weight": "model-00005-of-00005.safetensors", "model.layers.30.self_attn.v_proj.weight": "model-00005-of-00005.safetensors", "model.layers.30.self_attn.o_proj.weight": "model-00005-of-00005.safetensors", "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00005.safetensors", "model.layers.31.input_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00005.safetensors", "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00005.safetensors", "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00005.safetensors", "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00005.safetensors", "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.0.w3.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.1.w3.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.2.w3.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.3.w3.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.0.w1.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.1.w1.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.2.w1.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.3.w1.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.0.w2.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.1.w2.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.2.w2.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.experts.3.w2.weight": "model-00005-of-00005.safetensors", "model.layers.0.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.1.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.2.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.3.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.4.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.5.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.6.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.7.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.8.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.9.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.10.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.11.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.12.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.13.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.14.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.15.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.16.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.17.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.18.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.19.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.20.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.21.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.22.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.23.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.24.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.25.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.26.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.27.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.28.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.29.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.30.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors", "model.layers.31.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors"}}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": true,
|
35 |
+
"model_max_length": 32768,
|
36 |
+
"pad_token": "<s>",
|
37 |
+
"padding_side": "left",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|