Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1190.35 +/- 89.58
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fb0cf010431f0ef1558bd84d4e7f2083e0261f8f6162889486733fc23294cdc
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ef896b820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ef896b8b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ef896b940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ef896b9d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0ef896ba60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0ef896baf0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0ef896bb80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ef896bc10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0ef896bca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ef896bd30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ef896bdc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ef896be50>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f0ef8965870>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675112479501247672,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFhNXj96UcI+JWzLPiD4+T5q4ru+OHGmPyObNb8RBu6/PEE3P5nLxbw17Ms/a/gvv1Po2b9tc889NAzVvdDFrT7hYHK/o5wBv+1+Qz+TpWy8hKSNvnrDlr+pha++SXy/P4fRfj9/vQ4//3QBP+cyjL8n/DM/UAoAP47Voj5sJaC+BXl/vzQACT4ghcy9s1gowIvBNj9GqQG8w3OVPzIt9r82to+/rz5MPx/fjT4Zd989F7HePhzwmD+EUkI/fKO4PDfWeb8oK1g9xUGUPRX93z/wl4C/f70OP2Ye/b/nMoy/zO8wP7kGcz8YcOe9HrMFP+jyqD9+2Gy/YbJPP5yyrb+BppM9+0uqvuRvoj6Y5Bg/jahwP9Rkkb+DgzE/+npRPD+/FT+jHEe/FcRDP3+cnb4H4iE+ph8LP0UpQz9SvMi/8JeAv3+9Dj//dAE/5zKMv6fAhD5v2o4+kA/oPlsMSj4VPPC+vt8PwE40TL7Uyua+6W4eP4dO776fvbS9iYT6P13pyr8H5CTAAGsxPycmhjx98Ko+u52SvyATL77I9bi+OV0lv3QejL8VHy+/k8tewPCXgL9akOW//3QBP+cyjL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD339G1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAopyzvAAAAAC+X9m/AAAAAOKktb0AAAAAfv/hPwAAAACk7q49AAAAAADV2T8AAAAAq8msPQAAAADto/C/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJnGnNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPfY/b0AAAAAg0HjvwAAAAD3YRc7AAAAABkO7j8AAAAAaxskPQAAAAAIWf8/AAAAAIAhPL0AAAAAEbb5vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE++1bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICXFwO+AAAAALIW/78AAAAALRDRvQAAAADz8vc/AAAAAGt9DL4AAAAAJJrjPwAAAAC5XyC9AAAAALWB8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwniO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAI+y1PQAAAABBXu6/AAAAAPj6mzwAAAAAEaoAQAAAAAAkZ589AAAAANflAEAAAAAAvqffPQAAAAD+MPO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtNwvtdAxCMAWyUTegDjAF0lEdAqZC30Zm7KHV9lChoBkdAl5d6HXVbzWgHTegDaAhHQKmV0+s5n151fZQoaAZHQJoQM95hScdoB03oA2gIR0Cpl9Ladtl7dX2UKGgGR0CZ2NEovzvraAdN6ANoCEdAqZyah+OOsHV9lChoBkdAmv2s+RoysWgHTegDaAhHQKmdCKUmlZZ1fZQoaAZHQJm99uJk5IZoB03oA2gIR0CpokTF+/g0dX2UKGgGR0CYWb0GNaQnaAdN6ANoCEdAqaRfSnccl3V9lChoBkdAkNJouwosqmgHTegDaAhHQKmpLiZv1lJ1fZQoaAZHQIAsBaaCtihoB03oA2gIR0CpqaSofjjrdX2UKGgGR0CT+JAnUlRhaAdN6ANoCEdAqa7WWdEsrnV9lChoBkdAmChKErXlKmgHTegDaAhHQKmw8Z3s5XF1fZQoaAZHQJAFzmLcbitoB03oA2gIR0CptdhGQSzxdX2UKGgGR0CA52HTI/7jaAdN6ANoCEdAqbZWCK77K3V9lChoBkdAlFy53X7LuGgHTegDaAhHQKm7mOinHed1fZQoaAZHQJve3rv9cbBoB03oA2gIR0CpvZwOFxn4dX2UKGgGR0CO2aIldC3PaAdN6ANoCEdAqcKHL/0dzXV9lChoBkdAfAZ1KoQ4CWgHTegDaAhHQKnDBi/fwZx1fZQoaAZHQJU0YXaakRBoB03oA2gIR0CpyE8wg1WKdX2UKGgGR0CBmyanaWX1aAdN6ANoCEdAqcpeMwUQCnV9lChoBkdAmNv46r/822gHTegDaAhHQKnPMX1J17p1fZQoaAZHQHkSaClJpWVoB03oA2gIR0Cpz6cJD3M7dX2UKGgGR0B/ensWweNlaAdN6ANoCEdAqdTAJ7b+LnV9lChoBkdAkn+VxXGOuWgHTegDaAhHQKnW6q//Nqx1fZQoaAZHQIbxRswco6VoB03oA2gIR0Cp25u58Sf2dX2UKGgGR0CFmfGuLaVVaAdN6ANoCEdAqdwWXVsk6nV9lChoBkdAnDfa3iJfpmgHTegDaAhHQKnhGMG5c1R1fZQoaAZHQJoN1nM+u/1oB03oA2gIR0Cp4xJLmITHdX2UKGgGR0CSz8zRhMJyaAdN6ANoCEdAqefiydFvynV9lChoBkdAisbeLvTgEWgHTegDaAhHQKnoU8Fpwjt1fZQoaAZHQJQZmnyd4FBoB03oA2gIR0Cp7YVv2oNvdX2UKGgGR0B3cMTyrgfmaAdN6ANoCEdAqe+SMcZLqXV9lChoBkdAmCVtIoVmBmgHTegDaAhHQKn0G24NI9V1fZQoaAZHQJe+kEJSiudoB03oA2gIR0Cp9Iws5GSZdX2UKGgGR0CVmPYtQKrraAdN6ANoCEdAqfmXnfVI7XV9lChoBkdAidYdNWU8m2gHTegDaAhHQKn7hf4yoGZ1fZQoaAZHQJklo8bJfY1oB03oA2gIR0CqACO3c580dX2UKGgGR0CVPuHlwLmZaAdN6ANoCEdAqgCSGL1mJ3V9lChoBkdAm7+08JUo8mgHTegDaAhHQKoFkmNR3vB1fZQoaAZHQJoz5qqOtGNoB03oA2gIR0CqB4KgRK6GdX2UKGgGR0CXORY8Md92aAdN6ANoCEdAqgwlFpfx+nV9lChoBkdAkY0Ol41P32gHTegDaAhHQKoMlua4MF51fZQoaAZHQIbRWSZBsyloB03oA2gIR0CqEa/k/8l5dX2UKGgGR0CQWklt0mtyaAdN6ANoCEdAqhOw9A5aNnV9lChoBkdAku8vI0ZWJmgHTegDaAhHQKoYT6QeV9p1fZQoaAZHQJAnzCQ9zOpoB03oA2gIR0CqGL0ADJU6dX2UKGgGR0CTW9eTmnwYaAdN6ANoCEdAqh3HCCSRsHV9lChoBkdAkE7WQCCBgGgHTegDaAhHQKoft/tIClt1fZQoaAZHQIwpMDbJwKloB03oA2gIR0CqJFshX8wYdX2UKGgGR0CTE2NbC79RaAdN6ANoCEdAqiTSvaDf33V9lChoBkdAk/oVd5Y5k2gHTegDaAhHQKop8LpiZv11fZQoaAZHQI9AyQvHtF9oB03oA2gIR0CqK/iCSRr8dX2UKGgGR0CU8fNpdrwfaAdN6ANoCEdAqjCg+W4Vh3V9lChoBkdAlTnG56MR6GgHTegDaAhHQKoxFXDFZPl1fZQoaAZHQJlX7yy2QXBoB03oA2gIR0CqNhfEn9ehdX2UKGgGR0CU0+RPoFFEaAdN6ANoCEdAqjgHoicG1XV9lChoBkdAjFsaNlyzX2gHTegDaAhHQKo8hgBtDUp1fZQoaAZHQJVqoMvysjpoB03oA2gIR0CqPPdNvfj0dX2UKGgGR0CXwhozvZyuaAdN6ANoCEdAqkH6K508vHV9lChoBkdAgc04lyBClmgHTQYCaAhHQKpDREm6XjV1fZQoaAZHQJLUTm7rcCZoB03oA2gIR0CqRAAZKnNxdX2UKGgGR0CU60gUDdP+aAdN6ANoCEdAqkiOAkLQX3V9lChoBkdAlzNcmF8G92gHTegDaAhHQKpN/7qptJp1fZQoaAZHQJRUPmbLEDRoB03oA2gIR0CqT0GozeoDdX2UKGgGR0CXSaPHT7VKaAdN6ANoCEdAqk/+8CgbqHV9lChoBkdAkrBO+mFajmgHTegDaAhHQKpUmBnzxw11fZQoaAZHQJNDJ8zAN5NoB03oA2gIR0CqWe+k56t1dX2UKGgGR0COsXgb6xgRaAdN6ANoCEdAqlsfEZR8+nV9lChoBkdAmG2jYZl4DGgHTegDaAhHQKpb3qesgdR1fZQoaAZHQJK5HrgOz6doB03oA2gIR0CqYHJHRTjvdX2UKGgGR0CbESi48U22aAdN6ANoCEdAqmXjWoWHlHV9lChoBkdAlMAyKJl8PWgHTegDaAhHQKpnIg2ZRbd1fZQoaAZHQJT2ho24usdoB03oA2gIR0CqZ/Lv9cbBdX2UKGgGR0CSG+d3B55aaAdN6ANoCEdAqmyWRFI/aHV9lChoBkdAmSD6JAMUh2gHTegDaAhHQKpyGGW2PT51fZQoaAZHQJHtJE0BOpNoB03oA2gIR0Cqc1JF9a2XdX2UKGgGR0CUeHsJIDoyaAdN6ANoCEdAqnQMq+ajOHV9lChoBkdAlDiksWfseGgHTegDaAhHQKp4t1FH8TB1fZQoaAZHQJW0BU5uIh1oB03oA2gIR0CqfjYyfthNdX2UKGgGR0CSyLsNUfgaaAdN6ANoCEdAqn+GhTOxB3V9lChoBkdAlSEBZyMkyGgHTegDaAhHQKqAULuQZGd1fZQoaAZHQJSWSrtE5QxoB03oA2gIR0CqhRLCemNzdX2UKGgGR0CTU0jkMkQgaAdN6ANoCEdAqoqSQ9zOo3V9lChoBkdAk5T15fMOgGgHTegDaAhHQKqL0s7MgU11fZQoaAZHQJHbFRgqmTFoB03oA2gIR0CqjJewcHW0dX2UKGgGR0CXtesLfDUFaAdN6ANoCEdAqpFA60Y0mHV9lChoBkdAlFiK6OHWSWgHTegDaAhHQKqWwJiy6c11fZQoaAZHQJeKxW3jMmpoB03oA2gIR0Cql/3qAz55dX2UKGgGR0CaDEnSOR1YaAdN6ANoCEdAqpjDR8c+7nV9lChoBkdAkoByuloDgmgHTegDaAhHQKqdblbu+h51fZQoaAZHQJcDcosqaw5oB03oA2gIR0Cqou7+tKZldX2UKGgGR0CWzxCdSVGDaAdN6ANoCEdAqqQnTXrdFnV9lChoBkdAmAYdbs4T9WgHTegDaAhHQKqk9YK6WgR1fZQoaAZHQJakwuvllshoB03oA2gIR0CqqbNR3u/ldX2UKGgGR0CQl6kleF+NaAdN6ANoCEdAqq89nbqQinV9lChoBkdAlHpdr9ETg2gHTegDaAhHQKqwa5eZ5Rl1fZQoaAZHQJg/eakRBeJoB03oA2gIR0CqsSzisGPgdX2UKGgGR0CXRS4KQaJiaAdN6ANoCEdAqrXncnE2pHV9lChoBkdAlrc0ZWJaaGgHTegDaAhHQKq7ZURWcSZ1fZQoaAZHQJgUirksBhhoB03oA2gIR0CqvLCyprDZdX2UKGgGR0CWc5ZSNwR5aAdN6ANoCEdAqr15Enb7CXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce1b30c366f01e4049c4ddd2f32e9bd9f70787678fcce4d6ac7f094706afdf20
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80e463a821de80c4cccbeb42f1ac3ed028b0236a6e238fec1803832290f15ac8
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ef896b820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ef896b8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ef896b940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ef896b9d0>", "_build": "<function ActorCriticPolicy._build at 0x7f0ef896ba60>", "forward": "<function ActorCriticPolicy.forward at 0x7f0ef896baf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0ef896bb80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ef896bc10>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0ef896bca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ef896bd30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ef896bdc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ef896be50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0ef8965870>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675112479501247672, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFhNXj96UcI+JWzLPiD4+T5q4ru+OHGmPyObNb8RBu6/PEE3P5nLxbw17Ms/a/gvv1Po2b9tc889NAzVvdDFrT7hYHK/o5wBv+1+Qz+TpWy8hKSNvnrDlr+pha++SXy/P4fRfj9/vQ4//3QBP+cyjL8n/DM/UAoAP47Voj5sJaC+BXl/vzQACT4ghcy9s1gowIvBNj9GqQG8w3OVPzIt9r82to+/rz5MPx/fjT4Zd989F7HePhzwmD+EUkI/fKO4PDfWeb8oK1g9xUGUPRX93z/wl4C/f70OP2Ye/b/nMoy/zO8wP7kGcz8YcOe9HrMFP+jyqD9+2Gy/YbJPP5yyrb+BppM9+0uqvuRvoj6Y5Bg/jahwP9Rkkb+DgzE/+npRPD+/FT+jHEe/FcRDP3+cnb4H4iE+ph8LP0UpQz9SvMi/8JeAv3+9Dj//dAE/5zKMv6fAhD5v2o4+kA/oPlsMSj4VPPC+vt8PwE40TL7Uyua+6W4eP4dO776fvbS9iYT6P13pyr8H5CTAAGsxPycmhjx98Ko+u52SvyATL77I9bi+OV0lv3QejL8VHy+/k8tewPCXgL9akOW//3QBP+cyjL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD339G1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAopyzvAAAAAC+X9m/AAAAAOKktb0AAAAAfv/hPwAAAACk7q49AAAAAADV2T8AAAAAq8msPQAAAADto/C/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJnGnNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPfY/b0AAAAAg0HjvwAAAAD3YRc7AAAAABkO7j8AAAAAaxskPQAAAAAIWf8/AAAAAIAhPL0AAAAAEbb5vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE++1bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICXFwO+AAAAALIW/78AAAAALRDRvQAAAADz8vc/AAAAAGt9DL4AAAAAJJrjPwAAAAC5XyC9AAAAALWB8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwniO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAI+y1PQAAAABBXu6/AAAAAPj6mzwAAAAAEaoAQAAAAAAkZ589AAAAANflAEAAAAAAvqffPQAAAAD+MPO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtNwvtdAxCMAWyUTegDjAF0lEdAqZC30Zm7KHV9lChoBkdAl5d6HXVbzWgHTegDaAhHQKmV0+s5n151fZQoaAZHQJoQM95hScdoB03oA2gIR0Cpl9Ladtl7dX2UKGgGR0CZ2NEovzvraAdN6ANoCEdAqZyah+OOsHV9lChoBkdAmv2s+RoysWgHTegDaAhHQKmdCKUmlZZ1fZQoaAZHQJm99uJk5IZoB03oA2gIR0CpokTF+/g0dX2UKGgGR0CYWb0GNaQnaAdN6ANoCEdAqaRfSnccl3V9lChoBkdAkNJouwosqmgHTegDaAhHQKmpLiZv1lJ1fZQoaAZHQIAsBaaCtihoB03oA2gIR0CpqaSofjjrdX2UKGgGR0CT+JAnUlRhaAdN6ANoCEdAqa7WWdEsrnV9lChoBkdAmChKErXlKmgHTegDaAhHQKmw8Z3s5XF1fZQoaAZHQJAFzmLcbitoB03oA2gIR0CptdhGQSzxdX2UKGgGR0CA52HTI/7jaAdN6ANoCEdAqbZWCK77K3V9lChoBkdAlFy53X7LuGgHTegDaAhHQKm7mOinHed1fZQoaAZHQJve3rv9cbBoB03oA2gIR0CpvZwOFxn4dX2UKGgGR0CO2aIldC3PaAdN6ANoCEdAqcKHL/0dzXV9lChoBkdAfAZ1KoQ4CWgHTegDaAhHQKnDBi/fwZx1fZQoaAZHQJU0YXaakRBoB03oA2gIR0CpyE8wg1WKdX2UKGgGR0CBmyanaWX1aAdN6ANoCEdAqcpeMwUQCnV9lChoBkdAmNv46r/822gHTegDaAhHQKnPMX1J17p1fZQoaAZHQHkSaClJpWVoB03oA2gIR0Cpz6cJD3M7dX2UKGgGR0B/ensWweNlaAdN6ANoCEdAqdTAJ7b+LnV9lChoBkdAkn+VxXGOuWgHTegDaAhHQKnW6q//Nqx1fZQoaAZHQIbxRswco6VoB03oA2gIR0Cp25u58Sf2dX2UKGgGR0CFmfGuLaVVaAdN6ANoCEdAqdwWXVsk6nV9lChoBkdAnDfa3iJfpmgHTegDaAhHQKnhGMG5c1R1fZQoaAZHQJoN1nM+u/1oB03oA2gIR0Cp4xJLmITHdX2UKGgGR0CSz8zRhMJyaAdN6ANoCEdAqefiydFvynV9lChoBkdAisbeLvTgEWgHTegDaAhHQKnoU8Fpwjt1fZQoaAZHQJQZmnyd4FBoB03oA2gIR0Cp7YVv2oNvdX2UKGgGR0B3cMTyrgfmaAdN6ANoCEdAqe+SMcZLqXV9lChoBkdAmCVtIoVmBmgHTegDaAhHQKn0G24NI9V1fZQoaAZHQJe+kEJSiudoB03oA2gIR0Cp9Iws5GSZdX2UKGgGR0CVmPYtQKrraAdN6ANoCEdAqfmXnfVI7XV9lChoBkdAidYdNWU8m2gHTegDaAhHQKn7hf4yoGZ1fZQoaAZHQJklo8bJfY1oB03oA2gIR0CqACO3c580dX2UKGgGR0CVPuHlwLmZaAdN6ANoCEdAqgCSGL1mJ3V9lChoBkdAm7+08JUo8mgHTegDaAhHQKoFkmNR3vB1fZQoaAZHQJoz5qqOtGNoB03oA2gIR0CqB4KgRK6GdX2UKGgGR0CXORY8Md92aAdN6ANoCEdAqgwlFpfx+nV9lChoBkdAkY0Ol41P32gHTegDaAhHQKoMlua4MF51fZQoaAZHQIbRWSZBsyloB03oA2gIR0CqEa/k/8l5dX2UKGgGR0CQWklt0mtyaAdN6ANoCEdAqhOw9A5aNnV9lChoBkdAku8vI0ZWJmgHTegDaAhHQKoYT6QeV9p1fZQoaAZHQJAnzCQ9zOpoB03oA2gIR0CqGL0ADJU6dX2UKGgGR0CTW9eTmnwYaAdN6ANoCEdAqh3HCCSRsHV9lChoBkdAkE7WQCCBgGgHTegDaAhHQKoft/tIClt1fZQoaAZHQIwpMDbJwKloB03oA2gIR0CqJFshX8wYdX2UKGgGR0CTE2NbC79RaAdN6ANoCEdAqiTSvaDf33V9lChoBkdAk/oVd5Y5k2gHTegDaAhHQKop8LpiZv11fZQoaAZHQI9AyQvHtF9oB03oA2gIR0CqK/iCSRr8dX2UKGgGR0CU8fNpdrwfaAdN6ANoCEdAqjCg+W4Vh3V9lChoBkdAlTnG56MR6GgHTegDaAhHQKoxFXDFZPl1fZQoaAZHQJlX7yy2QXBoB03oA2gIR0CqNhfEn9ehdX2UKGgGR0CU0+RPoFFEaAdN6ANoCEdAqjgHoicG1XV9lChoBkdAjFsaNlyzX2gHTegDaAhHQKo8hgBtDUp1fZQoaAZHQJVqoMvysjpoB03oA2gIR0CqPPdNvfj0dX2UKGgGR0CXwhozvZyuaAdN6ANoCEdAqkH6K508vHV9lChoBkdAgc04lyBClmgHTQYCaAhHQKpDREm6XjV1fZQoaAZHQJLUTm7rcCZoB03oA2gIR0CqRAAZKnNxdX2UKGgGR0CU60gUDdP+aAdN6ANoCEdAqkiOAkLQX3V9lChoBkdAlzNcmF8G92gHTegDaAhHQKpN/7qptJp1fZQoaAZHQJRUPmbLEDRoB03oA2gIR0CqT0GozeoDdX2UKGgGR0CXSaPHT7VKaAdN6ANoCEdAqk/+8CgbqHV9lChoBkdAkrBO+mFajmgHTegDaAhHQKpUmBnzxw11fZQoaAZHQJNDJ8zAN5NoB03oA2gIR0CqWe+k56t1dX2UKGgGR0COsXgb6xgRaAdN6ANoCEdAqlsfEZR8+nV9lChoBkdAmG2jYZl4DGgHTegDaAhHQKpb3qesgdR1fZQoaAZHQJK5HrgOz6doB03oA2gIR0CqYHJHRTjvdX2UKGgGR0CbESi48U22aAdN6ANoCEdAqmXjWoWHlHV9lChoBkdAlMAyKJl8PWgHTegDaAhHQKpnIg2ZRbd1fZQoaAZHQJT2ho24usdoB03oA2gIR0CqZ/Lv9cbBdX2UKGgGR0CSG+d3B55aaAdN6ANoCEdAqmyWRFI/aHV9lChoBkdAmSD6JAMUh2gHTegDaAhHQKpyGGW2PT51fZQoaAZHQJHtJE0BOpNoB03oA2gIR0Cqc1JF9a2XdX2UKGgGR0CUeHsJIDoyaAdN6ANoCEdAqnQMq+ajOHV9lChoBkdAlDiksWfseGgHTegDaAhHQKp4t1FH8TB1fZQoaAZHQJW0BU5uIh1oB03oA2gIR0CqfjYyfthNdX2UKGgGR0CSyLsNUfgaaAdN6ANoCEdAqn+GhTOxB3V9lChoBkdAlSEBZyMkyGgHTegDaAhHQKqAULuQZGd1fZQoaAZHQJSWSrtE5QxoB03oA2gIR0CqhRLCemNzdX2UKGgGR0CTU0jkMkQgaAdN6ANoCEdAqoqSQ9zOo3V9lChoBkdAk5T15fMOgGgHTegDaAhHQKqL0s7MgU11fZQoaAZHQJHbFRgqmTFoB03oA2gIR0CqjJewcHW0dX2UKGgGR0CXtesLfDUFaAdN6ANoCEdAqpFA60Y0mHV9lChoBkdAlFiK6OHWSWgHTegDaAhHQKqWwJiy6c11fZQoaAZHQJeKxW3jMmpoB03oA2gIR0Cql/3qAz55dX2UKGgGR0CaDEnSOR1YaAdN6ANoCEdAqpjDR8c+7nV9lChoBkdAkoByuloDgmgHTegDaAhHQKqdblbu+h51fZQoaAZHQJcDcosqaw5oB03oA2gIR0Cqou7+tKZldX2UKGgGR0CWzxCdSVGDaAdN6ANoCEdAqqQnTXrdFnV9lChoBkdAmAYdbs4T9WgHTegDaAhHQKqk9YK6WgR1fZQoaAZHQJakwuvllshoB03oA2gIR0CqqbNR3u/ldX2UKGgGR0CQl6kleF+NaAdN6ANoCEdAqq89nbqQinV9lChoBkdAlHpdr9ETg2gHTegDaAhHQKqwa5eZ5Rl1fZQoaAZHQJg/eakRBeJoB03oA2gIR0CqsSzisGPgdX2UKGgGR0CXRS4KQaJiaAdN6ANoCEdAqrXncnE2pHV9lChoBkdAlrc0ZWJaaGgHTegDaAhHQKq7ZURWcSZ1fZQoaAZHQJgUirksBhhoB03oA2gIR0CqvLCyprDZdX2UKGgGR0CWc5ZSNwR5aAdN6ANoCEdAqr15Enb7CXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b39c63e6b397438b87e6e7f3063cb4a16a0679af3dfd62e758b346eefe2f1370
|
3 |
+
size 1064110
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1190.3544974048175, "std_reward": 89.57857098393079, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-30T22:05:53.953220"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea8b5bac3a8c1f20617c86f2a2543eff3bcf30195344311ca7036ec2380f3cf0
|
3 |
+
size 2136
|