|
import torch |
|
|
|
from typing import Any, Dict |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig |
|
from accelerate import dispatch_model, infer_auto_device_map |
|
from accelerate.utils import get_balanced_memory |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
with torch.autocast('cuda'): |
|
path = "oleksandrfluxon/mpt-7b-instruct-evaluate" |
|
config = AutoConfig.from_pretrained( |
|
path, |
|
trust_remote_code=True |
|
) |
|
|
|
config.init_device = 'cuda:0' |
|
config.max_seq_len = 4096 |
|
|
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b', padding_side="left") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
path, |
|
config, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
trust_remote_code=True, |
|
load_in_8bit=True |
|
) |
|
|
|
max_memory = get_balanced_memory( |
|
model, |
|
max_memory=None, |
|
no_split_module_classes=["MPTBlock"], |
|
dtype='float16', |
|
low_zero=False |
|
) |
|
device_map = infer_auto_device_map( |
|
model, |
|
max_memory=max_memory, |
|
no_split_module_classes=["MPTBlock"], |
|
dtype='float16' |
|
) |
|
self.model = dispatch_model(model, device_map=device_map) |
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: |
|
|
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
with torch.autocast('cuda'): |
|
|
|
|
|
inputs = self.tokenizer(inputs, return_tensors="pt") |
|
|
|
|
|
if parameters is not None: |
|
outputs = self.model.generate(**inputs, **parameters) |
|
else: |
|
outputs = self.model.generate(**inputs) |
|
|
|
|
|
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
return [{"generated_text": prediction}] |