|
from torch import cuda |
|
import transformers |
|
from accelerate import dispatch_model, infer_auto_device_map |
|
from accelerate.utils import get_balanced_memory |
|
from transformers import BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList |
|
from typing import Dict, List, Any |
|
|
|
class PreTrainedPipeline(): |
|
def __init__(self, path=""): |
|
path = "oleksandrfluxon/mpt-7b-instruct-evaluate" |
|
print("===> path", path) |
|
|
|
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' |
|
print("===> device", device) |
|
|
|
model = transformers.AutoModelForCausalLM.from_pretrained( |
|
'oleksandrfluxon/mpt-7b-instruct-evaluate', |
|
trust_remote_code=True, |
|
load_in_8bit=True, |
|
max_seq_len=8192, |
|
init_device=device |
|
) |
|
model.eval() |
|
|
|
print(f"===> Model loaded on {device}") |
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained("mosaicml/mpt-7b") |
|
|
|
self.pipeline = transformers.pipeline('text-generation', model=model, tokenizer=tokenizer) |
|
print("===> init finished") |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str`) |
|
parameters (:obj: `str`) |
|
Return: |
|
A :obj:`str`: todo |
|
""" |
|
|
|
inputs = data.pop("inputs",data) |
|
parameters = data.pop("parameters", {}) |
|
date = data.pop("date", None) |
|
print("===> inputs", inputs) |
|
print("===> parameters", parameters) |
|
|
|
result = self.pipeline(inputs, **parameters) |
|
print("===> result", result) |
|
|
|
return result |