oleksandrfluxon
commited on
Commit
•
5638f9e
1
Parent(s):
c7b6a1c
Update handler.py
Browse files- handler.py +49 -17
handler.py
CHANGED
@@ -1,16 +1,47 @@
|
|
1 |
import torch
|
2 |
|
3 |
from typing import Any, Dict
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
5 |
|
6 |
|
7 |
class EndpointHandler:
|
8 |
def __init__(self, path=""):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# load model and tokenizer from path
|
10 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
11 |
-
|
12 |
-
path,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
)
|
|
|
|
|
14 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
|
16 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
@@ -18,16 +49,17 @@ class EndpointHandler:
|
|
18 |
inputs = data.pop("inputs", data)
|
19 |
parameters = data.pop("parameters", None)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
1 |
import torch
|
2 |
|
3 |
from typing import Any, Dict
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
5 |
+
from accelerate import dispatch_model, infer_auto_device_map
|
6 |
+
from accelerate.utils import get_balanced_memory
|
7 |
|
8 |
|
9 |
class EndpointHandler:
|
10 |
def __init__(self, path=""):
|
11 |
+
config = AutoConfig.from_pretrained(
|
12 |
+
path,
|
13 |
+
trust_remote_code=True
|
14 |
+
)
|
15 |
+
# config.attn_config['attn_impl'] = 'triton'
|
16 |
+
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
|
17 |
+
config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096
|
18 |
+
|
19 |
+
|
20 |
# load model and tokenizer from path
|
21 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b', padding_side="left")
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
path,
|
24 |
+
config,
|
25 |
+
device_map="auto",
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
trust_remote_code=True
|
28 |
+
)
|
29 |
+
|
30 |
+
max_memory = get_balanced_memory(
|
31 |
+
model,
|
32 |
+
max_memory=None,
|
33 |
+
no_split_module_classes=["MPTBlock"],
|
34 |
+
dtype='float16',
|
35 |
+
low_zero=False
|
36 |
+
)
|
37 |
+
device_map = infer_auto_device_map(
|
38 |
+
model,
|
39 |
+
max_memory=max_memory,
|
40 |
+
no_split_module_classes=["MPTBlock"],
|
41 |
+
dtype='float16'
|
42 |
)
|
43 |
+
self.model = dispatch_model(model, device_map=device_map)
|
44 |
+
|
45 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
46 |
|
47 |
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
|
|
49 |
inputs = data.pop("inputs", data)
|
50 |
parameters = data.pop("parameters", None)
|
51 |
|
52 |
+
with torch.autocast('cuda'):
|
53 |
+
# preprocess
|
54 |
+
inputs = self.tokenizer(inputs, return_tensors="pt").to(self.device)
|
55 |
+
|
56 |
+
# pass inputs with all kwargs in data
|
57 |
+
if parameters is not None:
|
58 |
+
outputs = self.model.generate(**inputs, **parameters)
|
59 |
+
else:
|
60 |
+
outputs = self.model.generate(**inputs)
|
61 |
+
|
62 |
+
# postprocess the prediction
|
63 |
+
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
64 |
+
|
65 |
+
return [{"generated_text": prediction}]
|