--- language: - nl tags: - punctuation prediction - punctuation datasets: sonar license: mit widget: - text: "hervatting van de zitting ik verklaar de zitting van het europees parlement die op vrijdag 17 december werd onderbroken te zijn hervat" example_title: "Dutch Sample" metrics: - f1 --- This model predicts the punctuation of Dutch texts. We developed it to restore the punctuation of transcribed spoken language. This model was trained on the [SoNaR Dataset](http://hdl.handle.net/10032/tm-a2-h5). The model restores the following punctuation markers: **"." "," "?" "-" ":"** ## Sample Code We provide a simple python package that allows you to process text of any length. ## Install To get started install the package from [pypi](https://pypi.org/project/deepmultilingualpunctuation/): ```bash pip install deepmultilingualpunctuation ``` ### Restore Punctuation ```python from deepmultilingualpunctuation import PunctuationModel model = PunctuationModel(model="oliverguhr/fullstop-dutch-sonar-punctuation-prediction") text = "hervatting van de zitting ik verklaar de zitting van het europees parlement die op vrijdag 17 december werd onderbroken te zijn hervat" result = model.restore_punctuation(text) print(result) ``` **output** > hervatting van de zitting. ik verklaar de zitting van het europees parlement, die op vrijdag 17 december werd onderbroken, te zijn hervat. ### Predict Labels ```python from deepmultilingualpunctuation import PunctuationModel model = PunctuationModel() text = "hervatting van de zitting ik verklaar de zitting van het europees parlement die op vrijdag 17 december werd onderbroken te zijn hervat" clean_text = model.preprocess(text) labled_words = model.predict(clean_text) print(labled_words) ``` **output** > [['hervatting', '0', 0.99998724], ['van', '0', 0.9999784], ['de', '0', 0.99991274], ['zitting', '.', 0.6771242], ['ik', '0', 0.9999466], ['verklaar', '0', 0.9998566], ['de', '0', 0.9999783], ['zitting', '0', 0.9999809], ['van', '0', 0.99996245], ['het', '0', 0.99997795], ['europees', '0', 0.9999783], ['parlement', ',', 0.9908242], ['die', '0', 0.999985], ['op', '0', 0.99998224], ['vrijdag', '0', 0.9999831], ['17', '0', 0.99997985], ['december', '0', 0.9999827], ['werd', '0', 0.999982], ['onderbroken', ',', 0.9951485], ['te', '0', 0.9999677], ['zijn', '0', 0.99997723], ['hervat', '.', 0.9957053]] ## Results The performance differs for the single punctuation markers as hyphens and colons, in many cases, are optional and can be substituted by either a comma or a full stop. The model achieves the following F1 scores: | Label | F1 Score | | ------------- | -------- | | 0 | 0.985816 | | . | 0.854380 | | ? | 0.684060 | | , | 0.719308 | | : | 0.696088 | | - | 0.722000 | | macro average | 0.776942 | | micro average | 0.963427 | ## References TBD