File size: 13,626 Bytes
264a054 34204b8 efa3444 b02e7cc efa3444 899f6e1 efa3444 264a054 a26dbbb f0a402f a26dbbb 264a054 84c1556 264a054 84c1556 264a054 fa1807b 264a054 34204b8 fa1807b 264a054 9a7dd6d 34204b8 264a054 34204b8 264a054 34204b8 264a054 fa1807b 9a7dd6d fa1807b 9a7dd6d fa1807b 264a054 1e1cf33 264a054 1e1cf33 264a054 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
---
base_model:
- aubmindlab/bert-base-arabertv02
language:
- ar
model-index:
- name: omarelshehy/Arabic-Retrieval-v1.0
results:
- dataset:
config: ar
name: MTEB MIRACLRetrieval (ar)
revision: main
split: dev
type: miracl/mmteb-miracl
metrics:
- type: main_score
value: 58.664
- type: map_at_1
value: 32.399
- type: map_at_10
value: 50.236000000000004
- type: map_at_100
value: 51.87199999999999
- type: map_at_1000
value: 51.926
- type: ndcg_at_1
value: 48.376999999999995
- type: ndcg_at_10
value: 58.664
- type: ndcg_at_100
value: 63.754999999999995
- type: ndcg_at_1000
value: 64.672
- type: ndcg_at_20
value: 61.111000000000004
- type: ndcg_at_3
value: 51.266
- type: ndcg_at_5
value: 54.529
task:
type: Retrieval
- dataset:
config: ar
name: MTEB MIRACLRetrievalHardNegatives (ar)
revision: 95c8db7d4a6e9c1d8a60601afd63d553ae20a2eb
split: dev
type: mteb/miracl-hard-negatives
metrics:
- type: main_score
value: 60.026
- type: map_at_1
value: 32.547
- type: map_at_10
value: 51.345
- type: map_at_100
value: 53.190000000000005
- type: map_at_1000
value: 53.237
- type: ndcg_at_1
value: 48.3
- type: ndcg_at_10
value: 60.026
- type: ndcg_at_100
value: 65.62400000000001
- type: ndcg_at_1000
value: 66.282
- type: ndcg_at_20
value: 62.856
- type: ndcg_at_3
value: 52.1
- type: ndcg_at_5
value: 55.627
task:
type: Retrieval
- dataset:
config: ara-ara
name: MTEB MLQARetrieval (ara-ara)
revision: 397ed406c1a7902140303e7faf60fff35b58d285
split: test
type: facebook/mlqa
metrics:
- type: main_score
value: 56.032000000000004
- type: map_at_1
value: 45.218
- type: map_at_10
value: 52.32599999999999
- type: map_at_100
value: 53.001
- type: map_at_1000
value: 53.047999999999995
- type: ndcg_at_1
value: 45.228
- type: ndcg_at_10
value: 56.032000000000004
- type: ndcg_at_100
value: 59.486000000000004
- type: ndcg_at_1000
value: 60.938
- type: ndcg_at_20
value: 57.507
- type: ndcg_at_3
value: 52.05800000000001
- type: ndcg_at_5
value: 54.005
task:
type: Retrieval
- dataset:
config: ara-ara
name: MTEB MLQARetrieval (ara-ara)
revision: 397ed406c1a7902140303e7faf60fff35b58d285
split: validation
type: facebook/mlqa
metrics:
- type: main_score
value: 71.11
- type: map_at_1
value: 58.221000000000004
- type: map_at_10
value: 67.089
- type: map_at_100
value: 67.62700000000001
- type: map_at_1000
value: 67.648
- type: ndcg_at_1
value: 58.221000000000004
- type: ndcg_at_10
value: 71.11
- type: ndcg_at_100
value: 73.824
- type: ndcg_at_1000
value: 74.292
- type: ndcg_at_20
value: 72.381
- type: ndcg_at_3
value: 67.472
- type: ndcg_at_5
value: 69.803
task:
type: Retrieval
- dataset:
config: ar
name: MTEB MintakaRetrieval (ar)
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
split: test
type: jinaai/mintakaqa
metrics:
- type: main_score
value: 22.778000000000002
- type: map_at_1
value: 13.345
- type: map_at_10
value: 19.336000000000002
- type: map_at_100
value: 20.116999999999997
- type: map_at_1000
value: 20.246
- type: ndcg_at_1
value: 13.345
- type: ndcg_at_10
value: 22.778000000000002
- type: ndcg_at_100
value: 26.997
- type: ndcg_at_1000
value: 31.564999999999998
- type: ndcg_at_20
value: 24.368000000000002
- type: ndcg_at_3
value: 18.622
- type: ndcg_at_5
value: 20.72
task:
type: Retrieval
- dataset:
config: arabic
name: MTEB MrTidyRetrieval (arabic)
revision: fc24a3ce8f09746410daee3d5cd823ff7a0675b7
split: test
type: mteb/mrtidy
metrics:
- type: main_score
value: 55.584999999999994
- type: map_at_1
value: 34.197
- type: map_at_10
value: 48.658
- type: map_at_100
value: 49.491
- type: map_at_1000
value: 49.518
- type: ndcg_at_1
value: 36.91
- type: ndcg_at_10
value: 55.584999999999994
- type: ndcg_at_100
value: 59.082
- type: ndcg_at_1000
value: 59.711000000000006
- type: ndcg_at_20
value: 57.537000000000006
- type: ndcg_at_3
value: 48.732
- type: ndcg_at_5
value: 52.834
task:
type: Retrieval
- dataset:
config: default
name: MTEB SadeemQuestionRetrieval (default)
revision: 3cb0752b182e5d5d740df547748b06663c8e0bd9
split: test
type: sadeem-ai/sadeem-ar-eval-retrieval-questions
metrics:
- type: main_score
value: 67.916
- type: map_at_1
value: 31.785999999999998
- type: map_at_10
value: 58.18600000000001
- type: map_at_100
value: 58.287
- type: map_at_1000
value: 58.29
- type: ndcg_at_1
value: 31.785999999999998
- type: ndcg_at_10
value: 67.916
- type: ndcg_at_100
value: 68.44200000000001
- type: ndcg_at_1000
value: 68.53399999999999
- type: ndcg_at_20
value: 68.11
- type: ndcg_at_3
value: 66.583
- type: ndcg_at_5
value: 67.5
task:
type: Retrieval
- dataset:
config: ara-ara
name: MTEB XPQARetrieval (ara-ara)
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
split: test
type: jinaai/xpqa
metrics:
- type: main_score
value: 43.622
- type: map_at_1
value: 19.236
- type: map_at_10
value: 37.047000000000004
- type: map_at_100
value: 38.948
- type: map_at_1000
value: 39.054
- type: ndcg_at_1
value: 35.333
- type: ndcg_at_10
value: 43.622
- type: ndcg_at_100
value: 50.761
- type: ndcg_at_1000
value: 52.932
- type: ndcg_at_20
value: 46.686
- type: ndcg_at_3
value: 37.482
- type: ndcg_at_5
value: 39.635999999999996
task:
type: Retrieval
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- loss:MultipleNegativesRankingLoss
- retrieval
- mteb
pipeline_tag: sentence-similarity
library_name: sentence-transformers
license: apache-2.0
---
### 🚀 Arabic-Retrieval-v1.0
This is a high-performance Arabic information retrieval built using the robust **sentence-transformers** framework, it delivers **state-of-the-art performance** and is tailored to the richness and complexity of the Arabic language.
## 🔑 Key Features
- **🔥 Outstanding Performance**: Matches the accuracy of top-tier multilingual models like `e5-multilingual-large`. See [evaluation](https://huggingface.co/omarelshehy/Arabic-retrieval-v1.0#evaluation)
- **💡 Arabic-Focused**: Designed specifically for the nuances and dialects of Arabic, ensuring more accurate and context-aware results.
- **📉 Lightweight Efficiency**: Requires **25%-50% less memory**, making it ideal for environments with limited resources or edge deployments.
## 🌍 Why This Model?
Multilingual models are powerful, but they’re often bulky and not optimized for specific languages. This model bridges that gap, offering Arabic-native capabilities without sacrificing performance or efficiency. Whether you’re working on search engines, chatbots, or large-scale NLP pipelines, this model provides a **fast, accurate, and resource-efficient solution**.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
It is important to add the prefixes \<query\>: and \<passage\>: to your queries and passages while retrieving in the folllowing way:
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("omarelshehy/Arabic-Retrieval-v1.0")
# Query
query = "<query>: كيف يمكن للذكاء الاصطناعي تحسين طرق التدريس التقليدية؟"
# Passages
passages = [
"<passage>: طرق التدريس التقليدية تستفيد من الذكاء الاصطناعي عبر تحسين عملية المتابعة وتخصيص التجربة التعليمية. يقوم الذكاء الاصطناعي بتحليل بيانات الطلاب وتقديم توصيات فعالة للمعلمين حول طرق التدريس الأفضل.",
"<passage>: تطوير التعليم الشخصي يعتمد بشكل كبير على الذكاء الاصطناعي، الذي يقوم بمتابعة تقدم الطلاب بشكل فردي. يقدم الذكاء الاصطناعي حلولاً تعليمية مخصصة لكل طالب بناءً على مستواه وأدائه.",
"<passage>: الدقة في تقييم الطلاب تتزايد بفضل الذكاء الاصطناعي الذي يقارن النتائج مع معايير متقدمة. بالرغم من التحديات التقليدية، الذكاء الاصطناعي يوفر أدوات تحليل تتيح تقييماً أدق لأداء الطلاب."
]
# Encode query and passages
embeddings_query = model.encode(queries)
embeddings_passages = model.encode(passages)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings_query, embeddings_passages)
# Get best matching passage to query
best_match = passages[similarities.argmax().item()]
print(f"Best matching passage is {best_match}")
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
This model has been ealuated using 3 different datasets and the NDCG@10 metric
- Dataset 1: [castorini/mr-tydi](https://huggingface.co/datasets/castorini/mr-tydi)
- Dataset 2: [Omartificial-Intelligence-Space/Arabic-finanical-rag-embedding-dataset](https://huggingface.co/datasets/Omartificial-Intelligence-Space/Arabic-finanical-rag-embedding-dataset)
- Dataset 3: [sadeem-ai/sadeem-ar-eval-retrieval-questions](https://huggingface.co/datasets/sadeem-ai/sadeem-ar-eval-retrieval-questions)
and is compared to other highly performant models:
| **model** | **1** | **2** | **3** |
|-------------------------------------|-----------|--------------|-------------|
| Arabic-Retrieval-v1.0 | 0.875 | **0.72** | 0.679 |
| intfloat/multilingual-e5-large | **0.89** | 0.719 | **0.698** |
| intfloat/multilingual-e5-base | 0.87 | 0.69 | 0.686 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Citation
### BibTeX
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |