kyusonglee
commited on
Commit
•
c9fb333
1
Parent(s):
9734a55
Update modeling_omchat.py
Browse files- modeling_omchat.py +80 -6
modeling_omchat.py
CHANGED
@@ -42,17 +42,91 @@ from transformers.utils import logging
|
|
42 |
|
43 |
from .configuration_omchat import InternVisionConfig
|
44 |
|
45 |
-
try:
|
46 |
-
|
47 |
-
|
48 |
-
except:
|
49 |
-
print('FlashAttention is not installed.')
|
50 |
-
has_flash_attn = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
|
53 |
logger = logging.get_logger(__name__)
|
54 |
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
class InternRMSNorm(nn.Module):
|
57 |
def __init__(self, hidden_size, eps=1e-6):
|
58 |
super().__init__()
|
|
|
42 |
|
43 |
from .configuration_omchat import InternVisionConfig
|
44 |
|
45 |
+
#try:
|
46 |
+
#from .flash_attention import FlashAttention
|
47 |
+
has_flash_attn = True
|
48 |
+
#except:
|
49 |
+
# print('FlashAttention is not installed.')
|
50 |
+
# has_flash_attn = False
|
51 |
+
from einops import rearrange
|
52 |
+
|
53 |
+
try: # v1
|
54 |
+
from flash_attn.flash_attn_interface import \
|
55 |
+
flash_attn_unpadded_qkvpacked_func
|
56 |
+
except: # v2
|
57 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
58 |
+
|
59 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
60 |
+
|
61 |
|
62 |
|
63 |
logger = logging.get_logger(__name__)
|
64 |
|
65 |
|
66 |
+
class FlashAttention(nn.Module):
|
67 |
+
"""Implement the scaled dot product attention with softmax.
|
68 |
+
Arguments
|
69 |
+
---------
|
70 |
+
softmax_scale: The temperature to use for the softmax attention.
|
71 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
72 |
+
runtime)
|
73 |
+
attention_dropout: The dropout rate to apply to the attention
|
74 |
+
(default: 0.0)
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
78 |
+
super().__init__()
|
79 |
+
self.softmax_scale = softmax_scale
|
80 |
+
self.dropout_p = attention_dropout
|
81 |
+
|
82 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
83 |
+
max_s=None, need_weights=False):
|
84 |
+
"""Implements the multihead softmax attention.
|
85 |
+
Arguments
|
86 |
+
---------
|
87 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
88 |
+
if unpadded: (nnz, 3, h, d)
|
89 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
90 |
+
"""
|
91 |
+
assert not need_weights
|
92 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
93 |
+
assert qkv.is_cuda
|
94 |
+
|
95 |
+
if cu_seqlens is None:
|
96 |
+
batch_size = qkv.shape[0]
|
97 |
+
seqlen = qkv.shape[1]
|
98 |
+
if key_padding_mask is None:
|
99 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
100 |
+
max_s = seqlen
|
101 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
102 |
+
device=qkv.device)
|
103 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
104 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
105 |
+
softmax_scale=self.softmax_scale, causal=causal
|
106 |
+
)
|
107 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
108 |
+
else:
|
109 |
+
nheads = qkv.shape[-2]
|
110 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
111 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
112 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
113 |
+
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
114 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
115 |
+
softmax_scale=self.softmax_scale, causal=causal
|
116 |
+
)
|
117 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
118 |
+
indices, batch_size, seqlen),
|
119 |
+
'b s (h d) -> b s h d', h=nheads)
|
120 |
+
else:
|
121 |
+
assert max_s is not None
|
122 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
123 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
124 |
+
softmax_scale=self.softmax_scale, causal=causal
|
125 |
+
)
|
126 |
+
|
127 |
+
return output, None
|
128 |
+
|
129 |
+
|
130 |
class InternRMSNorm(nn.Module):
|
131 |
def __init__(self, hidden_size, eps=1e-6):
|
132 |
super().__init__()
|